• Title/Summary/Keyword: thin film$CH_{3}CN$

Search Result 7, Processing Time 0.021 seconds

Thin Film Gas Sensors Based on Tin Oxide for Acetonitrile (산화주석 기반의 아세토니트릴 검지용 박막형 가스센서)

  • Choi, Nak-Jin;Ban, Tae-Hyun;Kwak, Jun-Hyuk;Lim, Yeon-Tae;Joo, Byung-Su;Kim, Jae-Chang;Huh, Jeung-Soo;Lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.218-223
    • /
    • 2004
  • Thin film gas sensor based on tin oxide was fabricated and its characteristics were examined. Target gas is acetonitrile ($CH_{3}CN$) that is simulant gas of blood agent gas. Sensing materials are $SnO_{2}$, $SnO_{2}$/Pt, and (Sn/Pt)oxidation with thickness from $1000{\AA}$ to $3000{\AA}$. Sensor was consisted of sensing electrode with interdigit (IDT) type in front side and a heater in back side. Its dimension was $7{\times}10{\times}0.6mm^{3}$. Fabricated sensor was measured as flow type and monitored real time using PC. The optimal sensing material for $CH_{3}CN$ was {Sn($3000{\AA}$)/Pt($30{\AA}$)}oxidation and its sensitivity and operating temperature were 30%, $300^{\circ}C$ in $CH_{3}CN$ 3 ppm.

Detection of Blood Agent Gas Using $SnO_2$ Thin Film Gas Sensor

  • Choi, Nak-Jin;Kwak, Jun-Hyuk;Lim, Yeon-Tae;Joo, Byung-Su;Lee, Duk-Dong;Bahn, Tae-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.E2
    • /
    • pp.69-75
    • /
    • 2004
  • In this study, thin film gas sensor based on tin oxide was fabricated to examine its characteristics. Target gas is acetonitrile ($CH_3$CN) which is a blood simulant for the chemical warfare agent. Sensing materials are SnO$_2$ SnO$_2$/Pt, and Sn/Pt with thickness from 1000 to 3000 $\AA$. The sensor consists of a sensing electrode with inter-digit (IDT) type in front side and a heater in rear side. Resistance changes of sensing materials are monitored on real time basis using a data acquisition board with a 12-bit analog to digital converter. Sensitivities are measured at different operating temperatures also with different gas concentrations and film thickness. The high sensitivity is obtained for Sn (3000 $\AA$)/Pt (30 $\AA$) at 30$0^{\circ}C$ for 3 ppm. Response and recovery times were about 40 and 160 s, respectively. Repetition measurements showed very good results with $\pm$3% in full scale range.

Fabrication of SnO$_2$ Thin Film Sensor for $CH_3$CN Detection ($CH_3$CN 검지용 SnO$_2$ 박막형 센서의 제작)

  • 최낙진;반태현;곽준혁;허증수;이덕동
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.233-234
    • /
    • 2003
  • 9. 11 테러사건 이후 세계는 그 발생 장소와 시간을 예측할 수 없는 테러 공포에서 벗어나기 위해 지대한 관심을 갖고 대책 마련에 부심하고 있다. 특히 가공할만한 생화학무기의 사용이 현실적인 문제로 다가오고 있으며 그로 인한 대량살상은 인류의 생존을 위협하는 대재난을 불러일으킬 것으로 예상되고 있다. 따라서 생화학 테러에 대비할 수 있는 기술을 개발하는 일은 인류생존의 차원에서 절실히 필요한 실정이다(이종철, 1999). (중략)

  • PDF

Effect of Methane Gases on the Properties of Diamond Thin Films Synthesized by MPCVD (MPCVD법으로 증착된 다이아몬드 박막 특성에 미치는 메탄가스의 영향)

  • Song, Jin-Soo;Nam, Tae-Woon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.3
    • /
    • pp.229-233
    • /
    • 2011
  • Diamond thin films were deposited on pretreated Co cemented tungsten carbide (WC-6%Co) inserts as substrate by microwave plasma chemical vapor deposition (MPCVD) system, equipped with a 915MHz, 30kW generator for generating a large-size plasma. The substrates were pretreated with two solutions Murakami solution $[KOH:K_3Fe(CN)_6:H_2O]$ and nitric solution $[HNO_3:H_2O]$ to etch, WC and Co at cemented carbide substrates, respectively. The deposition experiments were performed at an input power of 10 kW and in a total pressure of 100 torr. The influence of various $CH_4$ contents on the crystallinity and morphology of the diamond films deposited in MPCVD was investigated using scanning electron microscopy (SEM) and Raman spectroscopy. The diamond film synthesized by the $CH_4$ plasma shows a triangle-faceted (111) diamond. As $CH_4$ contents was increased, the thickness of diamond films increased and the faceted planes disappeared. Finally, Faceted diamond changed into nano-crystalline diamond with random crystallinity.

The Morphology and Adhesion of TiCN Film formed by PECVD (PECVD 에 의해 형성된 TiCN 박막의 형상 및 밀착성)

  • Huh, J.;Nam, T.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.15 no.3
    • /
    • pp.118-126
    • /
    • 2002
  • TiCN thin films were deposited on tool steels at $510^{\circ}C$ by PECVD from a $TiCl_4+N_2+CH_4+H_2+Ar$ gaseous mixture. The microstructures and preferred orientation were investigated. The micro-scratch tests were performed using a system equipped with an acoustic emission sensor. Critical loads were determined to evaluate the adhesion of TiCN to substrate. The influences of the microstructures of substrates, double layered coatings, and coatings after nitriding(duplex coating) were investigated. The experimental results showed that the microstructures of substrates and double layered coating did not affect the critical loads considerably. By the duplex coating, critical loads were not always increased. In some cases, duplex coatings decreased critical loads significantly despite of absence of black layer. In this study, we tried to relate the results of scratch test to the residual stress analysis. Nitriding before the coating reduces the tensile residual stress in the film, which gives rise to low critical load in scratch test.

Iron(II) Tris(3-bromo-1,10-phenanthroline) Complex: Synthesis, Crystal Structure and Electropolymerization

  • Lee, Kyeong-Jong;Yoon, Il;Lee, Shim-Sung;Lee, Bu-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.3
    • /
    • pp.399-403
    • /
    • 2002
  • The complex of iron(II) tris(3-Br-phen) (3-Br-phen; 3-bromo-1,10-phenanthroline) was prepared as a precursor of electropolymerization and the crystal structure of [Fe(3-Br-phen)3]($PF_6$)2${\cdot}$CH3CN with a distorted octahedral geometry has been investigated. The reductive electropolymerization of $>[Fe(3-Br-phen)3]^{2+}$ complex onto the surface of a glassy carbon electrode and indium tin oxide (ITO) optically transparent electrode were performed in acetonitrile at room temperature. Thin film of poly-$>[Fe(3-Br-phen)3]^{2+}$ formed was adherent, electroactive and stably deposited on a glassy carbon disk electrode. The thin metallopolymeric film formed was also confirmed by absorption spectroscopy.

Porous silicon-based chemical and biosensors (다공질 실리콘 구조를 이용한 화학 및 바이오 센서)

  • Kim, Yun-Ho;Park, Eun-Jin;Choi, Woo-Seok;Hong, Suk-In;Min, Nam-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2410-2412
    • /
    • 2005
  • In this study, two types of PS substrate were fabricated for sensing of chemical and biological substances. For sensing of the humidity and chemical analyzes such as $CH_3OH$ or $C_2H_5OH$, PS layers are prepared by photoelectrochemical etching of silicon wafer in aqueous hydrofluoric acid solution. To evaluate their sensitivity, we measured the resistance variation of the PS diaphragm. As the amplitude of applied voltage increases from 2 to 6Vpp at constant frequency of 5kHz, the resistance variation for humidity sensor rises from 376.3 to $784.8{\Omega}$/%RH. And the sensitivities for $CH_3OH$ and $C_2H_5OH$ were 0.068 uA/% and 0.212 uA/%, respectively. For biological sensing application, amperometric urea sensors were fabricated based on porous silicon(PS), and planar silicon(PLS) electrode substrates by the electrochemical methods. Pt thin film was sputtered on these substrates which were previously formed by electrochemical anodization. Poly (3-methylthiophene) (P3MT) were used for electron transfer matrix between urease(Urs) and the electrode phase, and Urs also was by electrochemically immobilized. Effective working area of these electrodes was determined for the first time by using $Fe(CN)_6^{3-}/Fe(CN)_6^{4-}$ redox couple in which nearly reversible cyclic voltammograms were obtained. The $i_p$ vs $v^{1/2}$ plots show that effective working electrode area of the PS-based Pt thin film electrode was 1.6 times larger than the PLS-based one and we can readily expect the enlarged surface area of PS electrode would result in increased sensitivity by ca. 1.6 times. Actually, amperometric sensitivity of the Urs/P3MT/Pt/PS electrode was ca 0.91uA/$mM{\cdot}cm^2$, and that of the Urs/P3MT/Pt/PLS electrode was ca. 0.91uA/$mM{\cdot}cm^2$ in a linear range of 1mmol/L to 100mmol/L urea concentrations

  • PDF