• Title/Summary/Keyword: thickness ratio

Search Result 3,825, Processing Time 0.03 seconds

Resonant Displacement and Piezoelectric Properties of Thickness Shear Mode Piezoelectric Devices According to Length/Thickness Ratio (길이와 두께 비에 따른 두께 전단모드 압전소자의 공진 변위 및 압전특성)

  • Park, Min-Ho;Yoo, Ju-Hyun;Hong, Jae-Il;Jeong, Yeong-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.6
    • /
    • pp.463-467
    • /
    • 2011
  • In this study, thickness shear mode piezoelectric devices for AE sensor with excellent displacement and sensitivity characteristics were simulated using ATILA FEM program, and then fabricated. Displacement and electro mechanical coupling factors of the piezoelectric devices were investigated. The simulation results showed that excellent displacement and electromechanical coupling factor was obtained when the ratio of Length/Thickness was 1. The piezoelectric device of L/T= 1 exhibited the optimum values of fr= 150 kHz, displacement= $6.23{\times}10^{-8}$[m], $k_{15}$= 0.598. The results show that the thickness shear mode piezoelectric device is a promising candidate for the application of AE sensor piezoelectric device.

Effects of Whole Body Electromyostimulation on Muscle Activity and Muscle Thickness of Rectus Femoris, and Muscle Thickness of Abdominis Muscle in Healthy Adults

  • Lee, Keun-hyo;Park, Se-jin;Chon, Seung-chul
    • Physical Therapy Korea
    • /
    • v.26 no.4
    • /
    • pp.42-52
    • /
    • 2019
  • Background: Whole body-electromyostimulation (WB-EMS) is widely used for the rehabilitation and recovery of patients with various neuromusculoskeletal disorders. Objects: To objectively measure changes in lower extremity and abdominal muscles after sit-to-stand dynamic movement training using WB-EMS. Methods: A total of 46 healthy adults (23 experimental and 23 control subjects) performed sit-to-stand exercise; the experimental group with WB-EMS, and the control group without WB-EMS. The muscle activity of the lower extremity, and the muscle thickness of the lower extremity and abdominal muscles were measured before and after the intervention. Results: In terms of electromyographic activity, there was a significant interaction effect for the rectus femoris (RF) muscle (F=30.212, p=.000). With regards to ultrasonographic imaging, the muscle thickness of the RF muscle had a significant interaction effect at the muscle contraction ratio (F=8.071, p=.007). The deep abdominal muscles, such as the transverse abdominal (TrA) and internal oblique (IO) muscles, also showed significant interaction effects at the muscle contraction ratio (F=5.474, p=.024, F=24.151, p=.000, respectively). Conclusion: These findings suggest that WB-EMS may help to improve the muscular activity of the RF muscle, and the muscle thickness of the RF muscle and deep muscles such as the TrA and IO muscles.

Evaluation of mandibular cortical bone ratio on computed tomography images in patients taking bisphosphonates

  • Koo, Chul-Hong;Lee, Jae-Hoon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.40
    • /
    • pp.17.1-17.7
    • /
    • 2018
  • Background: Bisphosphonate (BP) has the ability to thicken the cortical bone. In addition, it has been reported that the cortical bone thickened by BP has relation to the medication-related osteonecrosis of the jaw (MRONJ). Therefore, the objective of this article is to analyze the ratio as well as thickness of cortical bone in the mandible using computed tomography (CT) and to evaluate it as the predictive factor of MRONJ. Methods: The thickness of the cortical bone was measured on a paraxial view of the CT showing the mental foramen in 95 patients: 33 patients with MRONJ (3 males, 30 females), 30 patients taking BP without MRONJ (2 males, 28 females), and 32 controls (9 males, 28 females). Also, the ratios of the cortical bone to the total bone were obtained using the measured values. Based on these results, we compared the difference of mandibular cortical bone ratio between the three groups. Results: The average cortical bone thickness was measured as 3.81 mm in patients with MRONJ, 3.39 mm in patients taking BP without MRONJ, and 3.23 mm in controls. There was only a significant difference between patients with MRONJ and controls (P < 0.05). On the other hand, the average mandibular cortical bone ratio was measured as 37.9% in patients with MRONJ, 27.9% in patients taking BP without MRONJ, and 23.3% in controls. There was a significant difference between all groups (P < 0.05). Conclusion: The mandibular cortical bone ratio is large in order of patients with MRONJ, patients taking BP without MRONJ, and controls. This result suggests that the mandibular cortical bone ratio would be very useful to predict the development of MRONJ.

Study on axial compressive behavior of quadruple C-channel built-up cold-formed steel columns

  • Nie, Shaofeng;Zhou, Tianhua;Liao, Fangfang;Yang, Donghua
    • Structural Engineering and Mechanics
    • /
    • v.70 no.4
    • /
    • pp.499-511
    • /
    • 2019
  • In this study, the axial compressive behavior of novel quadruple C-channel built-up cold-formed steel columns with different slenderness ratio was investigated, using the experimental and numerical analysis. The axial compressive capacity and failure modes of the columns were obtained and analyzed. The finite element models considering the geometry, material and contact nonlinearity were developed to simulate and analyze the structural behavior of the columns further. There was a great correlation between the numerical analyses and test results, which indicated that the finite element model was reasonable and accurate. Then influence of, slenderness ratio, flange width-to-thickness ratio and screw spacing on the mechanical behavior of the columns were studied, respectively. The tests and numerical results show that due to small slenderness ratio, the failure modes of the specimens are generally local buckling and distortional buckling. The axial compressive strength and stiffness of the quadruple C-channel built-up cold-formed steel columns decrease with the increase of maximum slenderness ratio. When the screw spacing is ranging from 150mm to 450mm, the axial compressive strength and stiffness of the quadruple C-channel built-up cold-formed steel columns change little. The axial compressive capacity of quadruple C-channel built-up cold-formed steel columns increases with the decrease of flange width-thickness ratio. A modified effective length factor is proposed to quantify the axial compressive capacity of the quadruple C-channel built-up cold-formed steel columns with U-shaped track in the ends.

An Experimental Study on the Fracture Toughness of Middle Carbon Steel (중탄소강(中炭素鋼)의 파속인성치(破續靭性値)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Shim, Kwan-Sik
    • Journal of Industrial Technology
    • /
    • v.2
    • /
    • pp.69-75
    • /
    • 1982
  • The fracture of a hot rolled SM 45C steel plate was investigated for various crack ratio, thickness and loading point using the method of J-integral. It was found that the stable crack growth increased as the thickness and crack ratio of the specimen. The results are summerized as follows. 1. The more crack ratio increase, the less fracture toughness tend to. 2. Considering fracture toughness, a thin specimen is stronger a thick one. 3. Considering only the bending of specimen without thickings of the axial direction, we can get $J_{1c}$ value decreased about 10 percentage within the scope of experimental crack ratio.

  • PDF

New Concept in Evaluation of Laser Tailored Blank weldability (새로운 개념의 Tailored Blank 레이저 용접성 경가 방법에 관한 연구)

  • 정봉근;고광문;정경훈;이창희
    • Laser Solutions
    • /
    • v.2 no.1
    • /
    • pp.61-67
    • /
    • 1999
  • This study introduces the new concept in the evaluation criteria of the $CO_2$ laser Tailored Blank weldability, The materials used are 0.7mm, 1.5mm thick low carbon automotive galvanized steels. Welding tests were conducted for both similar thickness(0.7mm-0.7mm, 1.5mm-1.5mm) and dissimilar thickness(0.7mm-1.5mm) cases. The criteria developed for optimum welding conditions were based on relationship between results of die press forming test, weld transverse tensile test Erichsen test and weld penetration measurements. Application of the developed criteria(fracture ratio, strength ratio and D/To) in obtaining optimum welding condition revealed that a weld which satisfied any of the criteria did not fracture during actual die press test.

  • PDF

Free transverse vibration of shear deformable super-elliptical plates

  • Altekin, Murat
    • Wind and Structures
    • /
    • v.24 no.4
    • /
    • pp.307-331
    • /
    • 2017
  • Free transverse vibration of shear deformable super-elliptical plates with uniform thickness was studied based on Mindlin plate theory using finite element method. Quadrilateral isoparametric elements were used in the paper. Sensitivity analysis was made to determine the influence of the thickness, the aspect ratio, and the shape of the plate on the natural frequency. Accuracy of the results computed in the current study was validated by comparing them with the solutions available in the literature. The results reveal that the frequencies of clamped super-elliptical plates lie in the range bounded by elliptical and rectangular plates irrespective of the aspect ratio, and furthermore, the frequency decreases if the super-elliptical power increases. A similar trend was observed for simply supported plates with high aspect ratio. The free vibration response for the first and the second symmetric-antisymmetric (SA) modes were found to be different for high aspect ratio. The results reveal that using insufficient number of degrees of freedom results in finding a totally different relation between the super-elliptical power and the frequency.

Free Vibration Analysis of Arches with Thickness varying in a Discontinuous Fashion (불연속 변화단면 아치의 자유진동 해석)

  • 이병구;오상진;모정만;김현상
    • Journal of KSNVE
    • /
    • v.3 no.4
    • /
    • pp.331-339
    • /
    • 1993
  • The main purpose of this paper is to present an analytical method for free vibration of arches with thickness varying in a discontinuous fashion. The ordinary differential equations governing the free vibration of these arches are derived as nondimensional forms including the effect of rotatory inertia. The governing equation are solved numerically for the circular and sinusoidal arches with hinged-hinged-hinged end clamped-clamped end constraints. As the numerical results, the effect of rotatory inertia on the natural frequencies is reported. The lowest four natural frequencies are presented as the functions of four nondimensional system parameters; the rise to span length ratio, the slenderness ratio, the section ratio and the ratio of discontinuous section.

  • PDF

Compressive performance with variation of yield strength and width-thickness ratio for steel plate-concrete wall structures

  • Choi, Byong-Jeong;Kim, Won-Ki;Kim, Woo-Bum;Kang, Cheol-Kyu
    • Steel and Composite Structures
    • /
    • v.14 no.5
    • /
    • pp.473-491
    • /
    • 2013
  • The primary objectives of this paper are to describe the buckling patterns and to determine the squash load of steel plate-concrete (SC) walls. The major variables in this study were the width-thickness (B/t) ratio and yield strength of surface steel plates. Six SC walls were tested, and the results include the maximum strength, buckling pattern of steel plates, strength of headed studs, and behavior of headed studs. Based on the test results, the effects of the B/t ratio on the compressive strength are also discussed. The paper also presents recommended effective length coefficients and discusses the effects of varying the yield strength of the steel plate, and the effects of headed studs on the performance of SC structures based on the test results and analysis.

PERFORMANCE OF MULTILAYER CERAMIC ACTUATOR BY CONSIDERING THE SHAPE EFFECT

  • Wee, S.B.;Jeong, S.J.;Song, J.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.594-597
    • /
    • 2003
  • In the present study, the piezoelectricity and polarization of multilayer ceramic actuator, being designed to stack PMN-PZ-PT ceramic layers and Ag-Pd electrode layers alternatively, were investigated under a consideration of geometric factor, the volume ratio of the ceramic to the electrode layers. The actuators were fabricated by tape casting of 0.2Pb(Mg1/3Nb2/3)O3-0.38PbZrO3-0.42PbTiO3 followed by lamination and burnout & co-firing processes. The actuators of 10 10 0.62 nm3 in size were formed in a way that 60 200 m thick ceramics were stacked alternatively with 5 m thick electrode layer. Increases in polarization and electric field-induced displacement with thickness of the ceramic layer were attributed to change of 90o/180o domain ratio, which was affected by interlayer internal stress. The piezoelectricity and actuation behaviors were found to depend upon the volume ratio (or thickness ratio) of ceramic to electrode layers.

  • PDF