• 제목/요약/키워드: thickness damage

검색결과 745건 처리시간 0.028초

겨울철 보통강도 콘크리트의 부재 두께 변화에 따른 초기동해 피해분석 (An Analysis on the Early Frost Damage According to the Component Thickness Changes of the Normal Strength Concrete Slab in Winter)

  • 김태우;이영준;김동규;김대건;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 춘계 학술논문 발표대회
    • /
    • pp.145-146
    • /
    • 2018
  • In this study, the purpose of the study is to determine the depth of damage caused by early frost damage in concrete slab structures under the conditions of external temperature during winter. In other words, we intend to analyze the depth variation of the early frost damage as the thickness of the normal strength concrete slab members changes. As a result, the thinner the component was, the deeper the early frost damage was found to be, and the resulting increase in brightness of the concrete was delayed. and It is analyzed that under this test condition, an early frost damage was created with a thickness of 50 mm for the member and a thickness of 39 mm for the member of 300 mm.

  • PDF

Analysis of the adhesive damage between composite and metallic adherends: Application to the repair of aircraft structures

  • Ibrahim, Nour Chafak;Bouanani, Morad Fari;Bouiadjra, Bel Abbes Bachir;Serier, Boualem
    • Advances in materials Research
    • /
    • 제5권1호
    • /
    • pp.11-20
    • /
    • 2016
  • In bonded composite repair of aircraft structures, the damage of the adhesive can thus reduce significantly the efficiency and the durability of the bonded composite repair. The adhesive damage models using critical zone have proven their effectiveness due to simplicity and ap-plicability of the damage criteria in these models. The scope of this study is to analyze the effects of the patch thickness and the adhesive thickness on the damage damage in bonded composite repair of aircraft structures by using modified damage zone theory. The obtained results show that, when the thickness of adhesive increases the damage zone increases and the adhesive loses its rigidity, inversely when the patch is reduced the adhesive damage be-comes more significant.

Improvement of Out-of-Plane Impact Damage Resistance of CFRP Due to Through-the-Thickness Stitching

  • Yoshimura, Akinori;Nakao, Tomoaki;Takeda, Nobuo
    • Advanced Composite Materials
    • /
    • 제18권2호
    • /
    • pp.121-134
    • /
    • 2009
  • The present study investigated, both experimentally and numerically, the improvement of low-velocity impact damage resistance of carbon fiber reinforced plastic (CFRP) laminates due to through-the-thickness stitching. First, we conducted drop-weight impact tests for stitched and unstitched laminates. The results of damage inspection confirmed that stitching did improve the impact damage resistance, and revealed that the improvement effect became greater as the impact energy increased. Moreover, the stitching affected the through-the-thickness damage distribution. Next, we performed FEM analysis and calculated the energy release rate of the delamination crack using the virtual crack closure technique (VCCT). The numerical results revealed that the stitching affected the through-the-thickness damage distribution because the stitch threads had a marked effect on decreasing both the modes I and II energy release rate around the bottom of the laminate. Comparison of the results for models that contained delaminations of various sizes revealed that the energy release rate became lower as delamination size increased; therefore the stitching improved the impact resistance more effectively when the impact energy was higher.

Anisotropic continuum damage analysis of thin-walled pressure vessels under cyclic thermo-mechanical loading

  • Surmiri, Azam;Nayebi, Ali;Rokhgireh, Hojjatollah;Varvani-Farahani, Ahmad
    • Structural Engineering and Mechanics
    • /
    • 제75권1호
    • /
    • pp.101-108
    • /
    • 2020
  • The present study intends to analyze damage in thin-walled steel cylinders undergoing constant internal pressure and thermal cycles through use of anisotropic continuum damage mechanics (CDM) model coupled with nonlinear kinematic hardening rule of Chaboche. Materials damage in each direction was defined based on plastic strain and its direction. Stress and strain distribution over wall-thickness was described based on the CDM model and the return mapping algorithm was employed based on the consistency condition. Plastic zone expansion across the wall thickness of cylinders was noticeably affected with change in internal pressure and temperature gradients. Expansion of plastic zone over wall-thickness at inner and outer surfaces and their boundaries demarking elastic and plastic regions was attributed to the magnitude of damage induced over thermomechanical cycles on the thin-walled samples tested at various pressure stresses.

접착제로 접합된 DCB 시험편의 피로 해석에 관한 연구 (Study on Fatigue Analysis of DCB Specimen Bonded)

  • 최해규;홍순직;김세환;조재웅
    • 한국산학기술학회논문지
    • /
    • 제13권7호
    • /
    • pp.2865-2871
    • /
    • 2012
  • 본 논문에서는 접착제로 접합된 DCB(이중외팔보) 시험편의 피로 해석을 수행하였다. 두께가 25 mm 및 40 mm인 두 모델들의 피로수명과 피로손상의 해석 결과를 비교해보면, 두께 25 mm인 모델이 두께 40 mm인 모델에 비하여 수명과 손상이 불리한 것으로 나타났으며 불규칙 피로하중에서는 'SAE transmission'에서 가장 불리한 값을 나타냈다. Rainflow matrices에서는 'SAE bracket history'에서 가장 취약한 것으로 나타났다. Damage matrices에서는 상대적으로 두께 25 mm인 모델이 불리한 모습을 보였지만, 상대적인 손상 가능성에서는 두께 40 mm인 모델이 더 높은 것으로 나타났다. 또한 'SAE transmission'에서 가장 안정한 경향을 보이고 있고 상대적인 손상으로서 약 1.1 에서 1.8% 정도로 가장 작은 것으로 나타났다. 본 연구에서 얻어진 해석 결과를 접착제로 접합된 실제 복합재 구조물에 적용시켜 파괴거동을 분석하고 그 기계적인 특성을 파악할 수 있다.

Mechanical properties of material in Q345GJ-C thick steel plates

  • Yang, Na;Su, Chao;Wang, Xiao-Feng;Bai, Fan
    • Steel and Composite Structures
    • /
    • 제21권3호
    • /
    • pp.517-536
    • /
    • 2016
  • Thick steel plate is commonly found with mega steel structures but its properties have not been fully explored. Grade Q345GJ-C steel plate with thickness ranging from 60 mm to 120 mm are studied in this paper. Both the static and cyclic performance of material in different directions (horizontal and through-thickness directions) and locations (outer surface, 1/4 thickness and mid-depth) are experimentally obtained. The accumulative damage during cyclic loading is also calculated by using bilinear mixed hardening (BMH) constitutive relationship together with the Lemaitre's damage model. Results show that the static properties are better at the outer surface of thick steel plates than those at mid-depth. Properties in through-thickness direction are similar to those at mid-depth in the horizontal direction. The cyclic performance at different locations of a given plate is similar within the range of strain amplitude studied. However, when damage parameters identified from monotonic tensile tests are included in the numerical simulation of cyclic loading tests, damage is found accumulating faster at mid-depth than close to outer surface.

Quantitative evaluation of through-thickness rectangular notch in metal plates based on lamb waves

  • Zhao, Na;Wu, Bin;Liu, Xiucheng;Ding, Keqin;Hu, Yanan;Bayat, Mahmoud
    • Structural Engineering and Mechanics
    • /
    • 제71권6호
    • /
    • pp.751-761
    • /
    • 2019
  • Lamb wave technology is a promising technology in the field of structural health monitoring and can be applied in the detection and monitoring of defects in plate structures. Based on the reconstruction algorithm for the probabilistic inspection of damage (RAPID), a Lamb-based detection and evaluation method of through-thickness rectangular notches in metal plates was proposed in this study. The influences of through-thickness rectangular notch length and the angle between sensing path and notch length direction on signals were further explored through simulations and experiments. Then a damage index calculation method which focuses on both phase and amplitude difference between detected signals and baseline signals was proposed. Based on the damage index difference between two vertically crossed sensing paths which pass through the notch in a sensor network, the notch direction identification method was proposed. In addition, the notch length was determined based on the damage index distribution along sensing paths. The experimental results showed that the image reconstructed with the proposed method could reflect the information for the evaluation of notches.

Effect of coating thickness on contact fatigue and wear behavior of thermal barrier coatings

  • Lee, Dong Heon;Jang, Bin;Kim, Chul;Lee, Kee Sung
    • Journal of Ceramic Processing Research
    • /
    • 제20권5호
    • /
    • pp.499-504
    • /
    • 2019
  • The effect of coating thickness on the contact fatigue and wear of thermal barrier coatings (TBCs) are investigated in this study. The same bondcoat material thickness (250 ㎛) are used for each sample, which allows the effect of the coating thickness of the topcoat to be investigated. TBCs with different coating thicknesses (200, 400, and 600 ㎛) are prepared by changing processing parameters such as the feeding rate of the feedstock, spraying speed, and spraying distance during APS(air plasma spray) coating. The damage size on the surface are strongly affected by the coating thickness effect. Although the damage size from contact fatigue using a spherical indenter diminish at a TBC of 200 ㎛, a high wear resistance such as a low friction coefficient and little mass change are found at a TBC of 600 ㎛. These results indicate that the coating thickness strongly affects the mechanical behavior in TBCs during gas turbine operation.

부재 두께 변화에 따른 콘크리트의 초기동해 특성 분석 및 깊이진단 (Early Frost Damage and Diagnose of Damage Depth Due to Early Frost Damage of the Concrete According to the Thickness of Members)

  • 김태우;한민철
    • 한국건축시공학회지
    • /
    • 제19권2호
    • /
    • pp.131-138
    • /
    • 2019
  • 최근에는 열악한 환경에 노출되는 콘크리트 구조물의 품질 확보에 대하여 관심이 증대되고 있다. 그 중에서 낮은 외 기온 조건에서의 초기양생 불량은 콘크리트 구조물의 초기 동해 피해를 일으킬 수 있는 것으로 알려지고 있다. 그러므로 본 연구에서는 겨울철 외기온 조건에서 결합재 종류 및 콘크리트 부재 두께 변화가 콘크리트의 초기동해 깊이에 미치는 영향 분석 및 초기동해 피해를 입은 구조체에 대하여 그 깊이를 명확히 판정하고자 하였다. 실험결과 초기동해피해의 경우 3성분계 혼합시멘트를 사용하고, 부재 두께가 얇을수록 초기동해 깊이가 깊고 코어 공시체의 명도 증가가 지연되었는데, 이는 초기발열량 저하로 콘크리트의 조직 이완이 용이하게 발생하여 흡수율이 증가하기 때문인 것으로 분석된다. 초기동해 깊이 판정은 24시간 침수 후 온도 $20^{\circ}C$, 상대습도 60 %전후인 실내에서 30분 전후로 건조를 시킬 경우 명도값(L) 45 이하의 짙은색과 밝은색으로 구별되는데, 짙은 색부분을 버니어캘리퍼스 등으로 측정하면 손쉽게 판단할 수 있다.

Numerical simulation on the coupled chemo-mechanical damage of underground concrete pipe

  • Xiang-nan Li;Xiao-bao Zuo;Yu-xiao Zou;Yu-juan Tang
    • Structural Engineering and Mechanics
    • /
    • 제86권6호
    • /
    • pp.779-791
    • /
    • 2023
  • Long-termly used in water supply, an underground concrete pipe is easily subjected to the coupled action of pressure loading and flowing water, which can cause the chemo-mechanical damage of the pipe, resulting in its premature failure and lifetime reduction. Based on the leaching characteristics and damage mechanism of concrete pipe, this paper proposes a coupled chemo-mechanical damage and failure model of underground concrete pipe for water supply, including a calcium leaching model, mechanical damage equation and a failure criterion. By using the model, a numerical simulation is performed to analyze the failure process of underground concrete pipe, such as the time-varying calcium concentration in concrete, the thickness variation of pipe wall, the evolution of chemo-mechanical damage, the distribution of concrete stress on the pipe and the lifetime of the pipe. Results show that, the failure of the pipe is a coupled chemo-mechanical damage process companied with calcium leaching. During its damage and failure, the concentrations of calcium phase in concrete decrease obviously with the time, and it can cause an increase in the chemo-mechanical damage of the pipe, while the leaching and abrasion induced by flowing water can lead to the boundary movement and wall thickness reduction of the pipe, and it results in the stress redistribution on the pipe section, a premature failure and lifetime reduction of the pipe.