• Title/Summary/Keyword: thick coating

Search Result 321, Processing Time 0.03 seconds

Investigation of the crystalline silicon solar cells with porous silicon layer (다공성 실리콘 막을 적용한 결정질 실리콘 태양전지 특성 연구)

  • Lee, Eun-Joo;Lee, Il-Hyung;Lee, Soo-Hong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.295-298
    • /
    • 2007
  • Reduction of optical losses in crystalline silicon solar cells by surface modification is one of the most important issues of silicon photovoltaics. Porous Si layers on the front surface of textured Si substrates have been investigated with the aim of improving the optical losses of the solar cells, because an anti-reflection coating(ARC) and a surface passivation can be obtained simultaneously in one process. We have demonstrated the feasibility of a very efficient porous Si ARC layer, prepared by a simple, cost effective, electrochemical etching method. Silicon p-type CZ (100) oriented wafers were textured by anisotropic etching in sodium carbonate solution. Then, the porous Si layers were formed by electrochemical etching in HF solutions. After that, the properties of porous Si in terms of morphology, structure and reflectance are summarized. The structure of porous Si layers was investigated with SEM. The formation of a nanoporous Si layer about 100nm thick on the textured silicon wafer result in a reflectance lower than 5% in the wavelength region from 500 to 900nm. Such a surface modification allows improving the Si solar cell characteristics. An efficiency of 13.4% is achieved on a monocrystalline silicon solar cell using the electrochemical technique.

  • PDF

Effect of the Coating on the Structure and Optical Properties of GaN Nanowires

  • Lee, Jong-Soo;Sim, Sung-Kyu;Min, Byung-Don;Cho, Kyoung-Ah;Kim, Hyun-Suk;Kim, Sang-Sig
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.3
    • /
    • pp.113-119
    • /
    • 2004
  • Structural and optical properties of as-synthesized, Ga$_2$O$_3$-coated, and Al$_2$O$_3$-coated GaN nanowires are examined in this paper. GaN nanowires were synthesized by thermal evaporation of ball-milled GaN powders in an NH$_3$ atmosphere. The thermal annealing of the as-synthesized GaN nanowires in an argon atmosphere allows their surfaces to be oxidized, leading to the formation of 2nm-thick Ga$_2$O$_3$ layers. For the oxidized GaN nanowires, the distances between the neighboring lattice planes are shortened, and an excitonic emission band is remarkably enhanced in intensity, compared with the as-synthesized GaN nanowires. In addition, the as-synthesized GaN nanowires were coated cylindrically with Al$_2$O$_3$ by atomic layer deposition technique. Our study suggests that the Al$_2$O$_3$-coating passivates some of surface states in the GaN nanowires.

Preparation of Ferroelectric $Cr_3C_2$ Thin Film Using Sol-Gel Spin Coating Process (솔-젤 회전 코팅법을 이용한 강유전성 $BaTiO_3$ 박막제조)

  • 배호기;고태경
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.7
    • /
    • pp.795-803
    • /
    • 1994
  • Ferroelectric BaTiO3 thin film was produced using BaTi-ethoxide sol. This sol was prepared from BaTi-ethoxide by a partial hydrolysis with ammonia as a basic catalyst and ethylene glycol as a chelating agent. BaTiO3 thin film was prepared from three continuous spin-coating layers of the sol on bare Si(100) wafer at 2500 rpm followed by pyrolysis at $700^{\circ}C$ for 30 min. After the heat treatment, the film was 0.200$\pm$0.010 ${\mu}{\textrm}{m}$ thick and its grain size was 0.059 ${\mu}{\textrm}{m}$. On the other hand, electrical properties were measured for BaTiO3 thin film separately prepared on Au-deposited silicon wafer. The dielectric constant and loss of the BaTiO3 thin film at room temperature was 150~160 and 0.04 respectively, which was measured at 10 kHz and oscillation level of 0.1 V. In the measurements of the dielectric properties at high temperatures, it was observed that the capacitance of the thin film increases steeply, while the dielectric loss reaches maximum around 1$25^{\circ}C$, which corresponds a phase transition from tetragonal to cubic BaTiO3.

  • PDF

Evaluation of Elastic Properties for Nanoscale Coating Layers Using Ultrasonic Atomic Force Microscopy (초음파원자현미경을 이용한 나노스케일 박막 코팅층에 대한 탄성특성 평가)

  • Kwak, Dong Ryul;Cho, Seung Bum;Park, Ik Keun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.5
    • /
    • pp.475-480
    • /
    • 2015
  • Ultrasonic atomic force microscopy (Ultrasonic-AFM) has been used to investigate the elastic property of the ultra-thin coating layer in a thin-film system. The modified Hertzian theory was applied to predict the contact resonance frequency through accurate theoretical analysis of the dynamic characteristics of the cantilever. We coat 200 nm thick Aluminum and Titanium thin films on the substrate using the DC Magnetron sputtering method. The amplitude and phase of the contact resonance frequency of a vibrating cantilever varies in response to the local stiffness constant. Ultrasonic-AFM images were obtained using the variations in the elastic property of the materials. The morphology of the surface was clearly observed in the Ultrasonic-AFM images, but was barely visible in the topography. This research demonstrates that Ultrasonic-AFM is a promising technique for visualizing the distribution of local stiffness in the nano-scale thin coatings.

High Pressure Curing of Phenol Resin for High Quality Coating of Glassy Carbon (고품질 유리질 카본 코팅을 위한 페놀 수지의 고압 경화)

  • Hong, Seok-Gi;Cho, Kwang-Youn;Kwon, Oh-Hyeon;Cho, Yong-Soo;Jang, Seung-Jo
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.2
    • /
    • pp.141-146
    • /
    • 2011
  • Successful coating of high quality glassy carbon is introduced by applying high pressure during the curing process of dip-coated phenol resin on graphite. The dependence of the applied pressure on the quality of the glassy carbon layer has not been reported so far. Pressure was changed from 0 to 400 psi during curing at $200^{\circ}C$. After carbonized at $1100^{\circ}C$ in inert atmosphere for the 400 psicured sample, as a promising result, a thick (~ 3 mm) and smooth glassy carbon layer could be obtained without any breakage, and the yield of carbonization was remarkably increased. It is believed that the cross-linking of resins results in decreasing volatile contents and, thus, increasing the yield of the glassy carbon. The origin of the improvement is discussed on the basis of several analytical results including FE-SEM, FT-IT and Raman spectrum.

Fabrication of thin Film Transistor on Plastic Substrate for Application to Flexible Display (Flexible 디스플레이로의 응용을 위한 플라스틱 기판 위의 박막트랜지스터의 제조)

  • 배성찬;오순택;최시영
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.7
    • /
    • pp.481-485
    • /
    • 2003
  • Amorphous silicon (a-Si:H) based TFT process has been studied at the maximum temperature of 15$0^{\circ}C$ with 25${\mu}{\textrm}{m}$ thick flexible and adhesive tape type polyimide foil substrate, which has benefit on handling a rugged, flexible plastic substrate trough sticking simply it to glass. This paper summarize the process procedure of the TFT on the plastic substrate and shows its electrical characteristics in comparison with glass substrate using primarily the ON/OFF current ratio and the field effect mobility as the quality criterion. The a-SiN:H coating layer played an important role in decreasing surface roughness of plastic substrate, so leakage current of TFT was decreased and mobility was increased. The results show that high quality a-Si:H TFTs can be fabricated on the plastic substrates through coating a rough plastic surface with a-SiN:H.

New MOD solution for the preparation of high $J_c$ REBCO superconducting films (고특성 REBCO 초전도 박막 제조를 위한 새로운 MOD 전구 용액 제조)

  • Kim, Byeong-Joo;Hong, Gye-Won;Lee, Hee-Gyoun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2001-2003
    • /
    • 2005
  • Various organic acid were used in order to prepare new metalorganic deposition solution for high quality $REBa_2Cu_3O_{7-{\delta}}$ (RE=Y, Eu, Gd) films. Prepared fluorine free MO precursor solution was coated on single crystal (001) $LaAlO_3$ (LAO) by dip coating method. Processing parameters such as oxygen partial pressure, water vapor, ramping rate and pyrolysis temperature etc havebeen controlled in order to make high $J_c$ films with a good epitaxial relationship with substrate. 0.5 micron-thick film was obtained by single coating and no crack appeared after calcination. Oxygen partial pressure was varied in the range of $100{\sim}1,000 ppm$ and conversion heat treatment was carried out at the temperature of $725{\sim}765^{\circ}C$. A critical transition temperature $(T_{c0})$ of 90K and a critical transport current density $(J_c)$ of $>0.5MA/cm^2$ (77K and self-field) were demonstrated for the YBCO film on (001) oriented LAO substrates with a thickness of 0.5 micron. $I_c$ was determined by utilizing a transport measurement. SEM and XRD investigations confirmed that films were grown epitaxially onto the LAO single crystal substrate. It is thought that fluorine free new MOD solutionis promising for high quality REBCO films.

  • PDF

Investigation of the surface structure improvement to reduce the optical losses of crystalline silicon solar cells (결정질 실리콘 태양전지의 광학적 손실 감소를 위한 표면구조 개선에 관한 연구)

  • Lee, Eun-Joo;Lee, Soo-Hong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.183-186
    • /
    • 2006
  • Reduction of optical losses in crystalline silicon solar cells by surface modification is one of the most important issues of silicon photovoltaics. Porous Si layers on the front surface of textured Si substrates have been investigated with the aim of improving the optical losses of the solar cells, because an anti-reflection coating and a surface passivation can be obtained simultaneously in one process. We have demonstrated the feasibility of a very efficient porous Si AR layer, prepared by a simple, cost effective, electrochemical etching method. Silicon p-type CZ (100) oriented wafers were textured by anisotropic etching in sodium carbonate solution. Then, the porous Si layer were formed by electrochemical etching in HF solutions. After that, the properties of porous Si in terms of morphology, structure and reflectance are summarized. The surface morphology of porous Si layers were investigated using SEM. The formation of a porous Si layer about $0.1{\mu}m$ thick on the textured silicon wafer result in an effective reflectance coefficient $R_{eff}$ lower than 5% in the wavelength region from 400 to 1000nm. Such a surface modification allows improving the Si solar cell characteristics.

  • PDF

Characterization of Microstructure, Hardness and Oxidation Behavior of Carbon Steels Hot Dipped in Al and Al-1 at% Si Molten Baths

  • Trung, Trinh Van;Kim, Sun Kyu;Kim, Min Jung;Kim, Seul Ki;Bong, Sung Jun;Lee, Dong Bok
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.8
    • /
    • pp.575-582
    • /
    • 2012
  • Medium carbon steel was aluminized by hot dipping into molten Al or Al-1 at% Si baths. After hot-dipping in these baths, a thin Al-rich topcoat and a thick alloy layer rich in $Al_5Fe_2$ formed on the surface. A small amount of FeAl and $Al_3Fe$ was incorporated in the alloy layer. Silicon from the Al-1 at% Si bath was uniformly distributed throughout the entire coating. The hot dipping increased the microhardness of the steel by about 8 times. Heating at $700-1000^{\circ}C$, however, decreased the microhardness through interdiffusion between the coating and the substrate. The oxidation at $700-1000^{\circ}C$ in air formed a thin protective ${\alpha}-Al_2O_3$ layer, which provided good oxidation resistance. Silicon was oxidized to amorphous silica, exhibiting a glassy oxide surface.

Influence of Electrolyte on the Shape and Characteristics of TiO2 during Anodic Oxidation of Titanium (Titanium 양극산화시 TiO2 의 형상 및 특성에 미치는 전해질의 영향)

  • Yeji Choi;Chanyoung Jeong
    • Corrosion Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.193-200
    • /
    • 2023
  • Titanium alloy (grade-4) is commonly used in industrial and medical applications. To improve its corrosion resistance and biocompatibility for medical use, it is necessary to form a titanium oxide film. In this study, the morphology of the oxide film formed by anodizing Ti-grade 4 using different electrolytes was analyzed. Wetting properties before and after surface modification with SAM coating were also observed. Electrolytes used were categorized as A, B, and C. Electrolyte A consisted of 0.3 M oxalic acid and ethylene glycol. Electrolyte B consisted of 0.1 M NH4F and 0.1 M H2O in ethylene glycol. Electrolyte C consisted of 0.07 M NH4F and 1 M H2O in ethylene glycol. Samples B and C exhibited a porous structure, while sample A formed a thickest oxide film with a droplet-like structure. AFM analysis and contact angle measurements showed that sample A with the highest roughness exhibited the best hydrophilicity. After surface modification with SAM coating, it displayed superior hydrophobicity. Despite having the thickest oxide film, sample A showed the lowest insulation resistance due to its irregular structure. On the other hand, sample C with a thick and regular porous oxide film demonstrated the highest insulation resistance.