DOI QR코드

DOI QR Code

Evaluation of Elastic Properties for Nanoscale Coating Layers Using Ultrasonic Atomic Force Microscopy

초음파원자현미경을 이용한 나노스케일 박막 코팅층에 대한 탄성특성 평가

  • Kwak, Dong Ryul (The Graduate School of NID Fusion Technology, Seoul Nat'l Univ. of Science & Technology) ;
  • Cho, Seung Bum (Dept. of Mechanical Engineering, The Graduate School, Seoul Nat'l Univ. of Science & Technology) ;
  • Park, Ik Keun (Dept. of Mechanical & Automotive Engineering, Seoul Nat'l Univ. of Science & Technology)
  • Received : 2015.09.04
  • Accepted : 2015.10.07
  • Published : 2015.10.15

Abstract

Ultrasonic atomic force microscopy (Ultrasonic-AFM) has been used to investigate the elastic property of the ultra-thin coating layer in a thin-film system. The modified Hertzian theory was applied to predict the contact resonance frequency through accurate theoretical analysis of the dynamic characteristics of the cantilever. We coat 200 nm thick Aluminum and Titanium thin films on the substrate using the DC Magnetron sputtering method. The amplitude and phase of the contact resonance frequency of a vibrating cantilever varies in response to the local stiffness constant. Ultrasonic-AFM images were obtained using the variations in the elastic property of the materials. The morphology of the surface was clearly observed in the Ultrasonic-AFM images, but was barely visible in the topography. This research demonstrates that Ultrasonic-AFM is a promising technique for visualizing the distribution of local stiffness in the nano-scale thin coatings.

Keywords

References

  1. Ahn, H. S., 2007, Estimation of Nanomechanical Properties of Nanosurfaces using Phase Contrast Imaging in Atomic Force Microscopy, Transactions of the KSMTE, 16:5 115-121.
  2. Lee, J. M., Han Y. H., Kwak D. R., Park, I. K., 2014, Analaysis of Contact Resonance Frequency Characteristics for Cantilever of Ultrasonic-AFM using Finite Element Method, Journal of the KSMTE, 23:5 478-484.
  3. Ahn, H. S., Jang, D. Y., 2009, Analysis of Nano-contact between Nano-asperities using Atomic Force Microscopy, Journal of the KSMTE, 18:4 369-374.
  4. King, R. B., 1987, Elastic Analysis of Some Punch Problems for a Layered Medium, Int. J. of Solids and Structures, 23:12 1657-1664. https://doi.org/10.1016/0020-7683(87)90116-8
  5. Chen, X., Vlassak, J. J., 2001, Numerical Study on the Measurement of Thin Film Mechanical Properties by Means of Nanoindentation, J. of Mat. Res., 16:10 2974-2982. https://doi.org/10.1557/JMR.2001.0408
  6. Tayebi, N., Polycarpou, A. A., Conry, T. F., 2001, Effects of Substrate on Determination of Hardness of Thin Films by Nanoscratch and Nanoindentation Techniques, J. of Mat. Res., 19:6 1791-1802.
  7. Ashrafi, B., Das, K., Faive, L. R., Hubert, P., Vengallatore, S., 2012, Measuring the elastic properties of freestanding thick films using a nanoindenter-based bending Test, Experimental Mechanics, 52(4), 371-378. https://doi.org/10.1007/s11340-011-9494-z
  8. Kourtis, L. C., Carter, D. R., Beaupre, G. S., 2014, Improving the Estimate of the Effective Elastic Modulus Derived from Three-point Bending Tests of Long Bones, Annals of Biomedical Engineering, 42:8 1773-1780. https://doi.org/10.1007/s10439-014-1027-3
  9. Alfano, M., Pagnotta, L., 2006, Measurement of the Dynamic Elastic Properties of a Thin Coating, Rev. of Sci. Instrum., 77:5 056107. https://doi.org/10.1063/1.2198747
  10. Schneider, D., Schwaz, T., Schultrich, B., 1992, Determination of Elastic Modulus and Thickness of Surface Layers by Ultrasonic Surface Waves, Thin Solid Films, 219:1-2 92-102. https://doi.org/10.1016/0040-6090(92)90728-T
  11. Tsuchiya, T., Ito, K., Miyoshi, S., Enoki, M., Yamaguchi, S., 2014, In-situ Monitoring of Oxide Ion Induced Breakdown in Amorphous Tantalum Oxide Thin Film using Acoustic Emission Measurement, Mater. Trans., 55:10 1553-1556. https://doi.org/10.2320/matertrans.M2014198
  12. Chudoba, T., Schwarzer, N., Richter, F., 2000, Determination of Elastic Properties of Thin Films by Indentation Measurements with a Spherical Indenter, Surf. Coat. Technol., 127:1 9-17. https://doi.org/10.1016/S0257-8972(00)00552-1
  13. Liu, S., Wang, Q. J., 2007, Determination of Young's Modulus and Poisson's Ratio for Coatings, Surf. Coat. Technol., 201:14 6470-6477. https://doi.org/10.1016/j.surfcoat.2006.12.021
  14. Liu, S., Peyronnel, A., Wang, Q. J., Keer, L. M., 2005, An Extension of the Herz Theory for 2D Coated Components, Tribol. Lett., 18:4 505-511. https://doi.org/10.1007/s11249-005-3611-z
  15. Park, T. S., Kwak, D. R., Park, I. K., Kim, C. S., Jhang, K. Y., 2011, Evaluation of Elastic Properties and Analysis of Contact Resonance Frequency of Cantilever for Ultrasonic AFM, J. of KSNT, 31:2 174-180.
  16. Cunfu, H., Gaimei, Z., Bin, W., Zaiqi, W., 2010, Subsurface Defect of the SiOx Film Imaged by Atomic Force Acoustic Microscopy, Optics and Laser in Engineering, 48:11 1108-1112. https://doi.org/10.1016/j.optlaseng.2009.12.014
  17. Banerjee, S., Gayathri, N., Dash, S., Tyagi, A. K., Raj, B., 2005, A Comparative Study of Contact Resonance Imaging using Atomic Force Microscopy, Appl. Phys. Lett., 86:21 211913. https://doi.org/10.1063/1.1927698
  18. Rabe, U., Janser, K., Arnold, W., 1996, Vibrations of Free and Surfacecoupled aTomic Force Microscope Cantilevers: Theory and Experiment, Rev. of Sci. Instrum., 67:9 3281-3293. https://doi.org/10.1063/1.1147409

Cited by

  1. Evaluating Interfacial Adhesion Properties of Pt/Ti Thin-Film by Using Acousto-Optic Technique vol.36, pp.3, 2016, https://doi.org/10.7779/JKSNT.2016.36.3.188