Acknowledgement
이 논문은 2023학년도 동의대학교 교내연구비에 의해 연구되었음(202301330001).
References
- C. Yao and T. J. Webster, Anodization: A Promising Nano-Modification Technique of Titanium Implants for Orthopedic Applications, Journal of nanoscience and nanotechnology, 6, 2682 (2006). Doi: https://doi.org/10.1166/jnn.2006.447
- F. R. Nowruzi, R. Imani, and S. Faghihi, Effect of Electrochemical Oxidation and Drug Loading on the Antibacterial Properties and Cell Biocompatibility of Titanium Substrates, Scientific Reports, 12, 1 (2022). Doi: https://doi.org/10.1038/s41598-022-12332-z
- Q. Cai, M. Paulose, O. K. Varghese, and C. A. Grimes, The Effect of Electrolyte Composition on the Fabrication of Self-organized Titanium Oxide Nanotube Arrays by Anodic Oxidation, Journal of Materials Research, 20, 230 (2005). Doi: https://doi.org/10.1557/JMR.2005.0020
- M. Kocabas, Effect of Surface Finish on the Colour Anodising of Ti-6Al-4V at Various Voltages, Transactions of the IMF, 101, 6 (2023). Doi: https://doi.org/10.1080/00202967.2022.2111121
- C. C. Chen, W. D. Jehng, L. L. Li, and E. W. G. Diau, Enhanced Efficiency of Dye-Sensitized Solar Cells Using Anodic Titanium Oxide Nanotube Arrays, Journal of the Electrochemical Society, 156, C304 (2009). Doi: https://doi.org/10.1149/1.3153288
- G. X. Xiang, S. Y. Li. H. Song, and Y. G. Nan, Fabrication of Modifier-free Superhydrophobic Surfaces with Anti-icing and Self-cleaning Properties on Ti Substrate by Anodization Method, Microelectronic Engineering, 233, 111430 (2020). Doi: https://doi.org/10.1016/j.mee.2020.111430
- J. Zhao, X. Wang, R. Chen, and L. Li, Fabrication of Titanium Oxide Nanotube Arrays by Anodic Oxidation, Solid State Communications, 134, 705 (2005). Doi: https://doi.org/10.1016/j.ssc.2005.02.028
- Y. Liu, Y. Zhang, L. Wang, G. Yang, F. Shen, S. Deng, X. Zhang, Y. He, Y. Hu, and X. Chen, Fast and Large-scale Anodizing Synthesis of Pine-cone TiO2 for Solar-driven Photocatalysis, Catalysts, 7, 229 (2017). Doi: https://doi.org/10.3390/catal7080229
- Y. Park and C. Jeong, Surface Modification of Functional Titanium Oxide to Improve Corrosion Resistance, Corrosion Science and Technology, 20, 256 (2021). Doi: https://doi.org/10.14773/cst.2021.20.5.256
- Y. Kim, J. Youk, and J. Choi, Inverse-direction Growth of TiO2 Microcones by Subsequent Anodization in HClO4 for Increased Performance of Lithium-Ion Batteries, ChemElectroChem, 7, 1248 (2020). Doi: https://doi.org/10.1002/celc.202000114
- A. Bartkowiak, A. Zarzycki, S. Kac, M. Perzanowski, and M. Marszalek, Mechanical Properties of Different Nanopatterned TiO2 Substrates and their Effect on Hydrothermally Synthesized Bioactive Hydroxyapatite Coatings, Materials, 13, 5290 (2020). Doi: https://doi.org/10.3390/ma13225290
- M. Izmir and B. Ercan, Anodization of Titanium Alloys for Orthopedic Applications, Frontiers of Chemical Science and Engineering, 13, 28 (2019). Doi: https://doi.org/10.1007/s11705-018-1759-y
- J. Hlinka, K. Dostalova, K. Cabanoca, R. Madeja, K. Frydrysek, J. Koutecky, Z. Rybkova, K. Malachova, and O. Umezawa, Electrochemical, Biological, and Technological Properties of Anodized Titanium for Color Coded Implants, Materials, 16, 632 (2023). Doi: https://doi.org/10.3390/ma16020632
- C. C. Chen, H. W. Chung, C. H. Chen, H. P. Lu, C. M. Lan, S. F. Chen, L. Luo, C. S. Hung, E. G. W. Diau, Fabrication and Characterization of Anodic Titanium Oxide Nanotube Arrays of Controlled Length for Highly Efficient Dye-sensitized Solar Cells, The Journal of Physical Chemistry C, 112, 19151 (2008). Doi: https://doi.org/10.1021/jp806281r
- M. Michalska-Domanska, K. Prabucka, and M. Czerwinski, Modification of Anodic Titanium Oxide Bandgap Energy by Incorporation of Tungsten, Molybdenum, and Manganese In Situ during Anodization, Materials, 16, 2707 (2023). Doi: https://doi.org/10.3390/ma16072707
- T. Guo, N. A. T. Oztug, P. Han S. Ivaniski, and K. Gulati, Old is gold: Electrolyte aging Influences the Topography, Chemistry, and Bioactivity of Anodized TiO2 Nanopores, ACS applied materials & interfaces, 13, 7897 (2021). Doi: https://doi.org/10.1021/acsami.0c19569
- J. M. Macak, H. Tsuchiya, L. Taveira, A. Ghicov, and P. Schmuki, Self-organized Nanotubular Oxide Layers on Ti-6Al-7Nb and Ti-6Al-4V formed by Anodization in NH4F Solutions, Journal of Biomedical Materials Research Part A, 75, 928 (2005). Doi: https://doi.org/10.1002/jbm.a.30501
- Y. Choi and C. Jeong, Growth Behavior and Corrosion Damage of Oxide Film According to Anodizing Time of Aluminum 1050 Alloy, Corrosion Science and Technology, 21, 282(2022). Doi: https://doi.org/10.14773/cst.2022.21.4.282
- H. Kim, K. Kee, D. Lee, S. Park, and K. Lee, Surface Characteristics of Oxide Film Prepared on CP Ti and Ti-10Ta-10Nb Alloy by Anodizing, Korean Journal of Materials, 17, 6 (2007). Doi: https://doi.org/10.3740/MRSK.2007.17.1.006
- W. Jeon and A. Han, Surface Modification of Ti-6Al-4V Alloy by Anodic Oxidation and Cyclic Precalcification Treatment. Korean Journal of Dental Materials 43, 1 (2016). Doi: https://doi.org/10.3390/ma12193231
- L. Bouchama, Y. Bouznit, N. Boukmouche, and S. Irki, Two-step vs. Single-Step Electrochemical Anodizing Process Regarding Anti-Corrosion Properties of Titanium, Analytical and Bioanalytical Electrochemistry, 15, 264 (2023). Doi: https://doi.org/10.22034/ABEC.2023.704566
- D. Gong, C. Grimes, O. Varghese, W. Hu, R. Singh, W. Chen, and E. Dickey, Titanium Oxide Nanotube Arrays Prepared by Anodic Oxidation, Journal of Materials Research, 16, 3331 (2001). Doi: https://doi.org/10.1557/JMR.2001.0457
- S. Yoo and H. Park, Effect of Anodic Oxidation Process Parameters on TiO2 Nanotube Formation in Ti-6Al-4V Alloys, Korean Journal of Metals And Materials, 51, 521 (2019). Doi: https://doi.org/10.3365/KJMM.2019.57.8.521
- J. Kim and C. Jeong, A Study on the Surface Properties and Corrosion Behavior of Functional Aluminum 3003 Alloy using Anodization Method, Corrosion Science and Technology, 21, 290 (2022). Doi: https://doi.org/10.14773/cst.2022.21.4.290
- J. Choi, R. B. Wehspohn, J. Lee, and U. Gosele, Anodization of Nanoimprinted Titanium: A Comparison with Formation of Porous Alumina, Electrochimica Acta, 49, 2645 (2004). Doi: https://doi.org/10.1016/j.electacta.2004.02.015
- Y. Kim and W. Kim, Enhancing the Surface Hydrophilicity of an Aluminum Alloy Using Two-Step Anodizing and the Effect on Inkjet Printing Characteristics, Coatings, 13, 232 (2023). Doi: https://doi.org/10.3390/coatings13020232
- T. Kikuchi, O, Nishinaga, S. Natsui, and R. O. Suzuki, Fabrication of Self-ordered Porous Slumina via Etidronic Acid Anodizing and Structural Color Generation from Submicrometer-scale Dimple Array, Electrochimica Acta, 156, 235 (2015). Doi: https://doi.org/10.1016/j.electacta.2014.12.171
- Y. K. Erdogan and B. Ercan, Anodized Nanostructured 316L Stainless Steel Enhances Osteoblast Functions and Exhibits Anti-Fouling Properties, ACS Biomaterials Science & Engineering, 9, 693 (2023). Doi: https://doi.org/10.1021/acsbiomaterials.2c01072
- A. B. Tesler, M. Altomare, and P. Schmuki, Morphology and Optical Properties of Highly Ordered TiO2 Nanotubes Grown in NH4F/O-H3PO4 Electrolytes in View of Light-harvesting and Catalytic Applications, ACS Applied Nano Materials, 3, 10646 (2020). Doi: https://doi.org/10.1021/acsanm.0c01859
- F. Raffin, J. Echouard, and P. Volovitch, Influence of the Anodizing Time on the Microstructure and Immersion Stability of Tartaric-Sulfuric Acid Anodized Aluminum Alloys, Metals, 13, 993 (2023). Doi: https://doi.org/10.3390/met13050993
- F. Martin, D. Del Frari, J. Cousty, and C. Bataillon. Selforganisation of Nanoscaled Pores in Anodic Oxide Overlayer on Stainless Steels, Electrochimica Acta, 54, 3086 (2009). Doi: https://doi.org/10.1016/j.electacta.2008.11.062
- H. Ji and C. Jeong, Fabrication of Superhydrophobic Aluminum Alloy Surface with Hierarchical Pore Nanostructure for Anti-Corrosion, Corrosion Science and Technology, 18, 228 (2019). Doi: https://doi.org/10.14773/cst.2019.18.6.228
- C. Jeong, A Study on functional Hydrophobic Stainless Steel 316L Using Single-Step Anodization and a Self-Assembled Monolayer Coating to Improve Corrosion Resistance, Coatings, 12, 395 (2022). Doi: https://doi.org/10.3390/coatings12030395
- C. Jeong, J. Jung, K. Sheppard, and C. H. Choi, Control of the Nanopore Architecture of Anodic Alumina via Stepwise Anodization with Voltage Modulation and Pore Widening, Nanomaterials, 13, 342 (2023). Doi: https://doi.org/10.3390/nano13020342
- C. Jeong, J. Lee, K. Sheppard, and C. Choi, Air-impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum, Langmuir, 31, 11040 (2015). Doi: https://doi.org/10.1021/acs.langmuir.5b02392
- H. Ji and C. Jeong, Study on Corrosion and Oxide Growth Behavior of Anodized Aluminum 5052 Alloy, Journal of the Korean institute of surface engineering, 51, 372 (2018). Doi: https://doi.org/10.5695/JKISE.2018.51.6.372
- J. Li, F. Du, X. Liu, Z. Jiang, and L. Ren, Superhydrophobicity of Bionic Alumina Surfaces Fabricated by Hard Anodizing, Journal of Bionic Engineering, 8, 369 (2011). Doi: https://doi.org/10.1016/S1672-6529(11)60042-5
- H. Ji and C. Jeong, Systematic Control of Anodic Aluminum Oxide Nanostructures for Enhancing the Superhydrophobicity of 5052 Aluminum Alloy, Materials, 12, 3231 (2019). Doi: https://doi.org/10.3390/ma12193231
- J. Lee, S. Shin, Y. Jiang, C. Jeong, H. Stone, and C. Choi, Oil-impregnated Nanoporous Oxide Layer for Corrosion Protection with Self-healing, Advanced Functional Materials, 27, 1606040 (2017). Doi: https://doi.org/10.1002/adfm.201606040
- C. Jeong and C. Choi, Jeong, Single-step Direct Fabrication of Pillar-on-pore Hybrid Nanostructures in Anodizing Aluminum for Superior Superhydrophobic Efficiency, ACS applied materials & interfaces, 4, 842 (2012). Doi: https://doi.org/10.1021/am201514n
- R. Kim and C. Jeong, Anti-Icing Characteristics of Aluminum 6061 Alloys According to Surface Nanostructure, Corrosion Science and Technology, 21, 476(2022), Doi: https://doi.org/10.14773/cst.2022.21.6.476