• Title/Summary/Keyword: thermo-elastic vibration

Search Result 28, Processing Time 0.019 seconds

Buckling and vibration analyses of MGSGT double-bonded micro composite sandwich SSDT plates reinforced by CNTs and BNNTs with isotropic foam & flexible transversely orthotropic cores

  • Mohammadimehr, M.;Nejad, E. Shabani;Mehrabi, M.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.491-504
    • /
    • 2018
  • Because of sandwich structures with low weight and high stiffness have much usage in various industries such as civil and aerospace engineering, in this article, buckling and free vibration analyses of coupled micro composite sandwich plates are investigated based on sinusoidal shear deformation (SSDT) and most general strain gradient theories (MGSGT). It is assumed that the sandwich structure rested on an orthotropic elastic foundation and make of four composite face sheets with temperature-dependent material properties that they reinforced by carbon and boron nitride nanotubes and two flexible transversely orthotropic cores. Mathematical formulation is presented using Hamilton's principle and governing equations of motions are derived based on energy approach and applying variation method for simply supported edges under electro-magneto-thermo-mechanical, axial buckling and pre-stresses loadings. In order to predict the effects of various parameters such as material length scale parameter, length to width ratio, length to thickness ratio, thickness of face sheets to core thickness ratio, nanotubes volume fraction, pre-stress load and orthotropic elastic medium on the natural frequencies and critical buckling load of double-bonded micro composite sandwich plates. It is found that orthotropic elastic medium has a special role on the system stability and increasing Winkler and Pasternak constants lead to enhance the natural frequency and critical buckling load of micro plates, while decrease natural frequency and critical buckling load with increasing temperature changes. Also, it is showed that pre-stresses due to help the axial buckling load causes that delay the buckling phenomenon. Moreover, it is concluded that the sandwich structures with orthotropic cores have high stiffness, but because they are not economical, thus it is necessary the sandwich plates reinforce by carbon or boron nitride nanotubes specially, because these nanotubes have important thermal and mechanical properties in comparison of the other reinforcement.

An efficient vibration control strategy for reliability enhancement of HAWT blade

  • Sajeer, M. Mohamed;Chakraborty, Arunasis;Das, Sourav
    • Smart Structures and Systems
    • /
    • v.26 no.6
    • /
    • pp.703-720
    • /
    • 2020
  • This paper investigates the safety of the wind turbine blade against excessive deformation. For this purpose, the performance of the blade in the along-wind direction is improved by longitudinal stiffener made of shape memory alloy. The rationale behind the selection of this smart material is due to its ability to offer excellent thermo-mechanical behaviour at low strain. Here, Liang-Roger model is adopted for vibration control, and the super-elastic effects are utilised for blade stiffening. Turbulent wind fields are generated at the hub height using TurbSim and the corresponding loads are evaluated using blade element momentum theory. An efficient switching algorithm is developed along with performance curves that enable the designer to select an optimal mode of heating depending upon the operational scenario. Numerical results presented in this paper clearly demonstrate the performance envelope of the proposed stiffener and its influence on the reliability of the blade.

Vibro-acoustics of functionally graded porous beams subjected to thermo-mechanical loads

  • Chinnapandi, Lenin Babu Mailan;Pitchaimani, Jeyaraj;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.44 no.6
    • /
    • pp.829-843
    • /
    • 2022
  • This manuscript work presents a comprehensive continuum model capable to investigate the effect of porosity on vibro-acoustic behaviour of functionally graded (FG) beams resting on an elastic foundation subjected to thermal and mechanical loadings. Effects of uniform temperature rise and edge compressive load on the sound radiation characteristics are studied in a comparative manner. The numerical analysis is carried out by combining finite element method with Rayleigh's integral. Detailed parametric studies are accomplished, and influences of power law index, porosity volume, porosity distribution and boundary conditions on the vibro-acoustic response characteristics are analyzed. It is found that the vibro-acoustic response under mechanical edge compression is entirely different compared to from that under the thermal load. Furthermore, nature of grading of porosity affects the sound radiation behaviour for both the loads. The proposed model can be used to obtain the suppression performance of vibration and noise FG porous beams under thermal and mechanical loads.

Vibration analysis of double-bonded micro sandwich cylindrical shells under multi-physical loadings

  • Yazdani, Raziye;Mohammadimehr, Mehdi;Zenkour, Ashraf M.
    • Steel and Composite Structures
    • /
    • v.33 no.1
    • /
    • pp.93-109
    • /
    • 2019
  • In the present study, vibration analysis of double bonded micro sandwich cylindrical shells with saturated porous core and carbon/boron nitride nanotubes (CNT/BNNT) reinforced composite face sheets under multi-physical loadings based on Cooper-Naghdi theory is investigated. The material properties of the micro structure are assumed to be temperature dependent, and each of the micro-tubes is placed on the Pasternak elastic foundations, and mechanical, moisture, thermal, electrical, and magnetic forces are effective on the structural behavior. The distributions of porous materials in three distributions such as non-linear non-symmetric, nonlinear-symmetric, and uniform are considered. The relationship including electro-magneto-hydro-thermo-mechanical loadings based on modified couple stress theory is obtained and moreover the governing equations of motion using the energy method and the Hamilton's principle are derived. Also, Navier's type solution is also used to solve the governing equations of motion. The effects of various parameters such as material length scale parameter, temperature change, various distributions of nanotube, volume fraction of nanotubes, porosity and Skempton coefficients, and geometric parameters on the natural frequency of double bonded micro sandwich cylindrical shells are investigated. Increasing the porosity and the Skempton coefficients of the core in micro sandwich cylindrical shell lead to increase the natural frequency of the structure. Cylindrical shells and porous materials in the industry of filters and separators, heat exchangers and coolers are widely used and are generally accepted today.

Vibration of a rotary FG plate with consideration of thermal and Coriolis effects

  • Ghadiri, Majid;Shafiei, Navvab;Babaei, Ramin
    • Steel and Composite Structures
    • /
    • v.25 no.2
    • /
    • pp.197-207
    • /
    • 2017
  • In this paper, Coriolis effect on vibration behavior of a rotating rectangular plate made of functionally graded (FG) materials under thermal loading has been investigated. The material properties of the FG plate are supposed to get changed in parallel with the thickness of the plate and the thermal properties of the material are assumed to be thermo-elastic. In this research, the effect of hub size, rotating speed and setting angle are considered. Governing equation of motion and the associated boundary conditions are obtained by Hamilton's principle. Generalized differential quadrature method (GDQM) is used to solve the governing differential equation with respect to cantilever boundary condition. The results were successfully verified with the published literatures. These results can be useful for designing rotary systems such as turbine blades. In this work, Coriolis and thermal effects are considered for the first time and GDQM method has been used in solving the equations of motion of a rotating FGM plate.

Analysis of Hot Judder of Disc Brakes for Automotives by Using Finite Element Method (유한 요소법을 이용한 자동차용 디스크 브레이크의 열간 저더 해석)

  • Jung, Sung-Pil;Park, Tae-Won;Chung, Won-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.4
    • /
    • pp.425-431
    • /
    • 2011
  • Thermal energy generated because of the friction between the disc and pad is transferred to both sides and causes thermal expansion of the material, which affects the contact pressure distribution. This phenomenon, which is called thermoelastic instability (TEI), is affected by the natural mode of a disc. TEI results in the formation of a hot spot and causes hot judder vibrations. In this study, three-dimensional analysis of the hot judder of a ventilated disc for automotives was performed by using the commercial finite element analysis program, SAMCEF. The intermediate processor based on a staggered approach was used to exchange the result data of the mechanical and thermal model. The hot spot was formed on the surface of the disc, and the number of hot spots was compared with the natural mode of the disc.

Spectral Element Analysis of an Axially Moving Thermoelastic Beam (축 방향으로 이동하는 열 탄성 보의 스펙트럴요소해석)

  • 김도연;권경수;이우식
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.3
    • /
    • pp.239-244
    • /
    • 2004
  • The use of frequency-dependent spectral element matrix (or exact dynamic stiffness matrix) in structural dynamics may provide very accurate solutions, together with drastically reducing the number of degrees of freedom to improve the computation efficiency and cost problems. Thus, this paper develops a spectral element model for the coupled thermoelastic beam which axially moves with constant speed under a uniform tension. The accuracy of the spectral element model is then evaluated by comparing the natural frequencies obtained by the present element model with those obtained by the conventional finite element model.

A Prediction of the Relation between the Disc Brake Temperature and the Hot Judder Critical Speed (주행 중 디스크 온도 변화와 열간 저더 임계속도와의 관계 예측)

  • Kim, Jaemin;Lee, Mingyu;Kim, Bumjin;Cho, Chongdu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.61-67
    • /
    • 2013
  • In this paper, it was studied how the critical speed which could occur hot judder due to disk temperature. Through the dynamometer experiment, we measured the critical velocity and surface temperature when the hot judder occur on the disk break. Also with the critical velocity theory equation and the temperature change graph of factors which used in the equation, we was induced experiment equation including theory equation and experiment values. And it has compared with the method which approach as linea. From this, we predicted the change of critical speed which could occur hot judder due to disk temperature. In addition, critical speed graph has compared with actual driving speed and disc temperature at a vehicle test. Therefore it was estimate to possibility of arising hot judder.