참고문헌
- Abo-bakr, H.M., Abo-bakr, R.M., Mohamed, S.A. and Eltaher, M. A. (2021a), "Multi-objective shape optimization for axially functionally graded microbeams", Compos. Struct., 258, 113370. https://doi.org/10.1016/j.compstruct.2020.113370.
- Abo-Bakr, R.M., Abo-Bakr, H.M., Mohamed, S.A. and Eltaher, M.A. (2021b), "Optimal weight for buckling of FG beam under variable axial load using Pareto optimality", Compos. Struct., 258, 113193. https://doi.org/10.1016/j.compstruct.2020.113193.
- Akbas, S.D. (2015), "Free vibration and bending of functionally graded beams resting on elastic foundation", Res. Eng. Struct. Mater., 1(1), 25-37. http://dx.doi.org/10.17515/resm2015.03st0107.
- Akbas, S.D., Bashiri, A.H., Assie, A.E. and Eltaher, M.A. (2021), "Dynamic analysis of thick beams with functionally graded porous layers and viscoelastic support", J. Vib. Control, 27(13-14), 1644-1655. https://doi.org/10.1177/1077546320947302.
- Akbas, S.D., Fageehi, Y.A., Assie, A.E. and Eltaher, M.A. (2020), "Dynamic analysis of viscoelastic functionally graded porous thick beams under pulse load", Eng. Comput., 1-13. https://doi.org/10.1007/s00366-020-01070-3.
- Alnujaie, A., Akbas, S.D., Eltaher, M.A. and Assie, A. (2021b), "Forced vibration of a functionally graded porous beam resting on viscoelastic foundation", Geomech. Eng., 24(1), 91-103. http://dx.doi.org/10.12989/gae.2021.24.1.091.
- Alnujaie, A., Akbas, S.D., Eltaher, M.A. and Assie, A.E. (2021a), "Damped forced vibration analysis of layered functionally graded thick beams with porosity", Smart Struct. Syst., 27(4), 679-689. https://doi.org/10.12989/sss.2021.27.4.679.
- Alshabatat, N.T. and Naghshineh, K. (2014), "Optimization of natural frequencies and sound power of beams using functionally graded material", Adv. Acoustic. Vib., 2014. http://dx.doi.org/10.1155/2014/752361.
- Alshorbagy, A.E., Eltaher, M.A. and Mahmoud, F.F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Mathem. Modelling, 35(1), 412-425. https://doi.org/10.1016/j.apm.2010.07.006.
- Aragh, B.S., Hedayati, H., Farahani, E.B. and Hedayati, M. (2011), "A novel 2-D six-parameter power-law distribution for free vibration and vibrational displacements of two-dimensional functionally graded fiber-reinforced curved panels", Europ. J. Mech.-A/Solids, 30(6), 865-883. https://doi.org/10.1016/j.euromechsol.2011.05.002.
- Aria, A.I. and Friswell, M.I. (2019), "A nonlocal finite element model for buckling and vibration of functionally graded nanobeams", Compos. Part B: Eng., 166, 233-246. https://doi.org/10.1016/j.compositesb.2018.11.071 .
- Aria, A.I. and Friswell, M.I. (2019), "Computational hygrothermal vibration and buckling analysis of functionally graded sandwich microbeams", Compos. Part B: Eng., 165, 785-797. https://doi.org/10.1016/j.compositesb.2019.02.028.
- Aria, A.I., Rabczuk, T. and Friswell, M.I. (2019), "A finite element model for the thermo-elastic analysis of functionally graded porous nanobeams", Europ. J. Mech.-A/Solids, 77, 103767. https://doi.org/10.1016/j.euromechsol.2019.04.002.
- Arunkumar, M.P., Bhagat, V., Geng, Q., Ning, J. and Li, Y. (2021), "An analytical solution for vibro-acoustic characteristics of sandwich panel with 3DGrF core and FG-CNT reinforced polymer composite face sheets", Aeros. Sci. Technol., 107091. https://doi.org/10.1016/j.ast.2021.107091.
- Assie, A., Akbas, S.D., Bashiri, A.H., Abdelrahman, A.A. and Eltaher, M.A. (2021), "Vibration response of perforated thick beam under moving load", Europ. Phys. J. Plus, 136(3), 1-15. https://doi.org/10.1140/epjp/s13360-021-01224-2.
- Aydogdu, M. and Taskin, V. (2007), "Free vibration analysis of functionally graded beams with simply supported edges", Mater. Des., 28(5), 1651-1656. https://doi.org/10.1016/j.matdes.2006.02.007.
- Berger, R., Kwon, P. and Dharan, C.K.H. (1994), "High speed centrifugal casting of metal matrix composites", In The Fifth International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Maui Hawaii.
- Choy, K.L. and Felix, E. (2000), "Functionally graded diamondlike carbon coatings on metallic substrates", Mater. Sci. Eng.: A, 278(1-2), 162-169. https://doi.org/10.1016/S0921-5093(99)00569-9.
- Darvishgohari, H., Zarastvand, M., Talebitooti, R. and Shahbazi, R. (2021), "Hybrid control technique for vibroacoustic performance analysis of a smart doubly curved sandwich structure considering sensor and actuator layers", J. Sandw. Struct. Mater., 23(5), 1453-1480. https://doi.org/10.1177/1099636219896251.
- Deng, T., Sheng, X., Jeong, H. and Thompson, D.J. (2021), "A two-and-half dimensional finite element/boundary element model for predicting the vibro-acoustic behaviour of panels with poro-elastic media", J. Sound Vib., 505, 116147. https://doi.org/10.1016/j.jsv.2021.116147.
- Ebrahimi, F. and Jafari, A. (2016), "Thermo-mechanical vibration analysis of temperature-dependent porous FG beams based on Timoshenko beam theory", Struct. Eng. Mech., 59(2), 343-371. http://dx.doi.org/10.12989/sem.2016.59.2.343
- Eltaher, M.A., Fouda, N., El-midany, T. and Sadoun, A.M. (2018), "Modified porosity model in analysis of functionally graded porous nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40(3), 1-10. https://doi.org/10.1007/s40430-018-1065-0.
- Esen, I., Abdelrahman, A.A. and Eltaher, M.A. (2021a), "On vibration of sigmoid/symmetric functionally graded nonlocal strain gradient nanobeams under moving load", Int. J. Mech. Mater. Des., 17, 721-742. https://doi.org/10.1007/s10999-021-09555-9.
- Esen, I., Eltaher, M.A. and Abdelrahman, A.A. (2021b), "Vibration response of symmetric and sigmoid functionally graded beam rested on elastic foundation under moving point mass", Mech. Based Des. Struct. Machines, 1-25. https://doi.org/10.1080/15397734.2021.1904255.
- Esen, I., Daikh, A.A. and Eltaher, M.A. (2021c), "Dynamic response of nonlocal strain gradient FG nanobeam reinforced by carbon nanotubes under moving point load", Europ. Phys. J. Plus, 136(4), 1-22. https://doi.org/10.1140/epjp/s13360-021-01419-7.
- Esfahani, S.E., Kiani, Y. and Eslami, M.R. (2013), "Non-linear thermal stability analysis of temperature dependent FGM beams supported on non-linear hardening elastic foundations", Int. Journal of Mechanical Sciences, 69, 10-20. https://doi.org/10.1016/j.ijmecsci.2013.01.007
- Esfahani, S.E., Kiani, Y., Komijani, M. and Eslami, M.R. (2014), "Vibration of a temperature-dependent thermally pre/postbuckled FGM beam over a nonlinear hardening elastic foundation", J. Appl. Mech., 81(1). https://doi.org/10.1115/1.4023975.
- Fakher, M., Behdad, S. and Hosseini-Hashemi, S. (2020), "Vibration analysis of stress-driven nonlocal integral model of viscoelastic axially FG nanobeams", Europ. Phys. J. Plus, 135(11), 1-21. https://doi.org/10.1140/epjp/s13360-020-00923-6.
- Fukui, Y. (1991), "Fundamental investigation of functionally gradient material manufacturing system using centrifugal force", JSME Int. J., Vib. Control Eng., Eng. Ind., 34(1), 144-148. https://doi.org/10.1299/jsmec1988.34.144.
- George, N. and Jeyaraj, P. (2018), "Nonuniform heat effects on buckling of laminated composite beam: Experimental investigations", Int. J. Structuct. Stab. Dyn., 18(12), 1850153. https://doi.org/10.1142/S0219455418501535.
- George, N., Jeyaraj, P. and Murigendrappa, S.M. (2016), "Buckling of non-uniformly heated isotropic beam: Experimental and theoretical investigations", Thin-Wall. Struct., 108, 245-255. https://doi.org/10.1016/j.tws.2016.08.019.
- Gilorkar, A., Murugan, R. and Pitchaimani, J. (2020), "Thermal buckling of sisal and glass hybrid woven composites: Experimental investigation", Compos. Part C, 2, 100012. https://doi.org/10.1016/j.jcomc.2020.100012.
- Gunasekaran, V., Pitchaimani, J. and Chinnapandi, L.B.M. (2020), "Analytical investigation on free vibration frequencies of polymer nano composite plate: Effect of graphene grading and non-uniform edge loading", Mater. Today Commun., 24, 100910. https://doi.org/10.1016/j.mtcomm.2020.100910.
- Gunasekaran, V., Pitchaimani, J. and Chinnapandi, L.B.M. (2020), "Vibro-acoustics response of an isotropic plate under nonuniform edge loading: An analytical investigation", Aeros. Sci. Technol., 105, 106052. https://doi.org/10.1016/j.ast.2020.106052.
- Gunasekaran, V., Pitchaimani, J., Chinnapandi, L.B.M. and Kumar, A. (2020), "Analytical solution for sound radiation characteristics of graphene nanocomposites plate: Effect of porosity and variable edge load", Int. J. Struct. Stab. Dyn., 21(06), 2150087. https://doi.org/10.1142/S0219455421500875.
- Hamed, M.A., Abo-Bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2020), "Influence of axial load function and optimization on static stability of sandwich functionally graded beams with porous core", Eng. Comput., 36(4), 1929-1946. https://doi.org/10.1007/s00366-020-01023-w.
- Hamed, M.A., Abo-Bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2020), "Influence of axial load function and optimization on static stability of sandwich functionally graded beams with porous core", Eng. Comput., 36(4), 1929-1946. https://doi.org/10.1007/s00366-020-01023-w.
- Hamed, M.A., Eltaher, M.A., Sadoun, A.M. and Almitani, K.H. (2016), "Free vibration of symmetric and sigmoid functionally graded nanobeams", Appl. Phys. A, 122(9), 1-11. https://doi.org/10.1007/s00339-016-0324-0.
- Hamed, M.A., Sadoun, A.M. and Eltaher, M.A. (2019), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., 71(1), 89-98. https://doi.org/10.12989/sem.2019.71.1.089.
- Ibnorachid, Z., Boutahar, L., EL Bikri, K. and Benamar, R. (2019), "Buckling temperature and natural frequencies of thick porous functionally graded beams resting on elastic foundation in a thermal environment", Adv. Acoustic. Vib., 2019. https://doi.org/10.1155/2019/7986569.
- Jena, S.K., Chakraverty, S. and Malikan, M. (2020), "Vibration and buckling characteristics of nonlocal beam placed in a magnetic field embedded in Winkler-Pasternak elastic foundation using a new refined beam theory: an analytical approach", Europ. Phys. J. Plus, 135(2), 1-18. https://doi.org/10.1140/epjp/s13360-020-00176-3.
- Kanakannavar, S. and Pitchaimani, J. (2021), "Thermal buckling of braided flax woven polylactic acid composites", J. Reinforce. Plastics Compos., 40(7-8), 261-272. https://doi.org/10.1177/0731684420957740.
- Kang, Y.A. and Li, X.F. (2010), "Large deflections of a non-linear cantilever functionally graded beam", J. Reinforced Plastics Compos., 29(12), 1761-1774. https://doi.org/10.1177/0731684409103340.
- Khor, K.A. and Gu, Y.W. (2000), "Effects of residual stress on the performance of plasma sprayed functionally graded ZrO2/NiCoCrAlY coatings", Mater. Sci. Eng.: A, 277(1-2), 64-76. https://doi.org/10.1016/S0921-5093(99)00565-1.
- Kumar, A., Gunasekaran, V. and Pitchaimani, J. (2020), "Acoustic response behavior of porous 3D graphene foam plate", Appl. Acoustic., 169, 107431. https://doi.org/10.1016/j.apacoust.2020.107431.
- Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A. and Ford, R.G. (2013), Functionally Graded Materials: Design, Processing and Applications, Springer Science & Business Media.
- Munde, Y.S., Ingle, R.B. and Siva, I. (2019), "Vibration damping and acoustic characteristics of sisal fibre-reinforced polypropylene composite", Noise Vib. Worldwide, 50(1), 13-21. https://doi.org/10.1177/0957456518812784.
- Pinnola, F.P., Vaccaro, M.S., Barretta, R. and de Sciarra, F.M. (2021). Random vibrations of stress-driven nonlocal beams with external damping", Meccanica, 56(6), 1329-1344. https://doi.org/10.1007/s11012-020-01181-7.
- Pious, D., Jacob, J., George, N., Bhagat, V., Chacko, T. and Jeyaraj, P. (2020), "Vibro-acoustic behaviour of functionally graded graphene reinforced polymer nanocomposites", In AIP Conference Proceeding, AIP Publishing LLC. https://doi.org/10.1063/5.0004109.
- Rezaei, A.S., Saidi, A.R., Abrishamdari, M. and Mohammadi, M. P. (2017), "Natural frequencies of functionally graded plates with porosities via a simple four variable plate theory: an analytical approach", Thin-Wall. Struct., 120, 366-377. https://doi.org/10.1016/j.tws.2017.08.003.
- Robinson, M.T.A. and Adali, S. (2018), "Buckling of nonuniform and axially functionally graded nonlocal Timoshenko nanobeams on Winkler-Pasternak foundation", Compos. Struct., 206, 95-103. https://doi.org/10.1016/j.compstruct.2018.07.046.
- Sepehry, N., Ehsani, M., Shamshirsaz, M. and Sadighi, M. (2021), "Modeling of vibro-acoustic modulation induced by non-linear contact in the Euler-Bernoulli beam using the Fourier spectral element", Amirkabir J. Mech. Eng., 53(6), https://doi.org/10.22060/MEJ.2021.18676.6875.
- Sharma, N. and Panda, S.K. (2020), "Multiphysical numerical (FE-BE) solution of sound radiation responses of laminated sandwich shell panel including curvature effect", Comput. Mathem. Appl., 80(5), 1221-1239. https://doi.org/10.1016/j.camwa.2020.06.010.
- Sharma, N., Mahapatra, T.R., Panda, S.K. and Katariya, P. (2020), "Thermo-acoustic analysis of higher-order shear deformable laminated composite sandwich flat panel", J. Sandw. Struct. Mater., 22(5), 1357-1385. https://doi.org/10.1177/1099636218784846.
- Shen, H.S. (2016), Functionally Graded Materials: Nonlinear Analysis of Plates and Shells. CRC press.
- Waddar, S., Pitchaimani, J., Doddamani, M. and Barbero, E. (2019), "Buckling and vibration behaviour of syntactic foam core sandwich beam with natural fiber composite facings under axial compressive loads", Compos. Part B: Eng., 175, 107133. https://doi.org/10.1016/j.compositesb.2019.107133.
- Wang, D., Geng, Q. and Li, Y. (2018), "Effect of static load on vibro-acoustic behaviour of clamped plates with geometric imperfections", J. Sound Vib., 432, 155-172. https://doi.org/10.1016/j.jsv.2018.06.019.
- Yang, Y., Fenemore, C., Kingan, M.J. and Mace, B.R. (2021), "Analysis of the vibroacoustic characteristics of cross laminated timber panels using a wave and finite element method", J. Sound Vib., 494, 115842. https://doi.org/10.1016/j.jsv.2020.115842.
- Yayli, M.O. (2015), "Buckling analysis of a rotationally restrained single walled carbon nanotube", Acta Physica Polonica A, 127(3), 678-683. https://doi.org/10.12693/APhysPolA.127.678
- Yayli, M.O. (2016), "Buckling analysis of a microbeam embedded in an elastic medium with deformable boundary conditions", Micro Nano Lett., 11, 741-745. https://doi.org/10.1049/mnl.2016.0257.
- Yayli, M.O. (2018a), "Free longitudinal vibration of a nanorod with elastic spring boundary conditions made of functionally graded material", Micro Nano Lett., 13 (7), 1031-1035. https://doi.org/10.1049/mnl.2018.0181.
- Yayli, M.O. (2018b), "Free vibration analysis of a single-walled carbon nanotube embedded in an elastic matrix under rotational restraints", Micro Nano Lett., 13(2), 202-206. https://doi.org/10.1049/mnl.2017.0463
- Yayli, M.O. (2018c), "Torsional vibration analysis of nanorods with elastic torsional restraints using non-local elasticity theory", Micro Nano Lett., 13(5), 595-599. https://doi.org/10.1049/mnl.2017.0751
- Yayli, M.O. (2019), "Effects of rotational restraints on the thermal buckling of carbon nanotube", Micro Nano Lett., 14 (2), 158-162. https://doi.org/1010.1049/mnl.2018.5428.
- Yayli, M.O. (2019), "Free vibration analysis of a rotationally restrained (FG) nanotube", Microsyst. Technol., 25(10), 3723-3734. https://doi.org/10.1007/s00542-019-04307-4
- Yayli, M.O. (2020), "Axial vibration analysis of a Rayleigh nanorod with deformable boundaries", Microsyst. Technol., 26(8), 2661-2671. https://doi.org/10.1007/s00542-020-04808-7.
- Zghal, S. and Dammak, F. (2020), "Vibrational behavior of beams made of functionally graded materials by using a mixed formulation", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234, 3650-3666. https://doi.org/10.1177/0954406220916533
- Zghal, S., Ataoui, D. and Dammak, F. (2020), "Static bending analysis of beams made of functionally graded porous materials", Mech. Based Des. Struct. Machines, 50, 1012-1029. https://doi.org/10.1080/15397734.2020.1748053.
- Zghal, S., Ataoui, D. and Dammak, F. (2021), "Free vibration analysis of porous beams with gradually varying mechanical properties", Proceedings of the Institute of Mechanical Engineers, Part M: Journal of Engineering for the Marine Environment. https://doi.org/10.1177/14750902211047746.
- Zhang, B., Li, Y. and Lu, W.Z. (2016), "Dynamic characteristics of rotating pretwisted clamped-clamped beam under thermal stress", J. Mech. Sci. Technol., 30(9), 4031-4042. https://doi.org/10.1007/s12206-016-0816-z.
- Zhang, X.H., Han, J.C., Du, S.Y. and Wood, J.V. (2000), "Microstructure and mechanical properties of TiC-Ni functionally graded materials by simultaneous combustion synthesis and compaction", J. Mater. Sci., 35(8), 1925-1930. https://doi.org/10.1023/A:1004714402128.
- Zheng, H. and Cai, C. (2004), "Minimization of sound radiation from baffled beams through optimization of partial constrained layer damping treatment", Appl. Acoustics, 65(5), 501-520. https://doi.org/10.1016/j.apacoust.2003.11.008.