• Title/Summary/Keyword: thermal responses

Search Result 432, Processing Time 0.023 seconds

Surface and size dependent effects on static, buckling, and vibration of micro composite beam under thermo-magnetic fields based on strain gradient theory

  • Mohammadimehr, Mehdi;Mehrabi, Mojtaba;Hadizadeh, Hasan;Hadizadeh, Hossein
    • Steel and Composite Structures
    • /
    • v.26 no.4
    • /
    • pp.513-531
    • /
    • 2018
  • In this article, static, buckling and free vibration analyses of a sinusoidal micro composite beam reinforced by single-walled carbon nanotubes (SWCNTs) with considering temperature-dependent material properties embedded in an elastic medium in the presence of magnetic field under transverse uniform load are presented. This system is used at micro or sub micro scales to enhance the stiffness of micro composite structures such as bar, beam, plate and shell. In the present work, the size dependent effects based on surface stress effect and modified strain gradient theory (MSGT) are considered. The generalized rule of mixture is employed to predict temperature-dependent mechanical and thermal properties of micro composite beam. Then, the governing equations of motions are derived using Hamilton's principle and energy method. Numerical results are presented to investigate the influences of material length scale parameters, elastic foundation, composite fiber angle, magnetic intensity, temperature changes and carbon nanotubes volume fraction on the bending, buckling and free vibration behaviors of micro composite beam. There is a good agreement between the obtained results by this research and the literature results. The obtained results of this study demonstrate that the magnetic intensity, temperature changes, and two parameters elastic foundations have important effects on micro composite stiffness, while the magnetic field has greater effects on the bending, buckling and free vibration responses of micro composite beams. Moreover, it is shown that the effects of surface layers are important, and observed that the changes of carbon nanotubes volume fraction, beam length-to-thickness ratio and material length scale parameter have noticeable effects on the maximum deflection, critical buckling load and natural frequencies of micro composite beams.

Hepatic Expression of Cu/Zn-Superoxide Dismutase Transcripts in Response to Acute Metal Exposure and Heat Stress in Hemibarbus mylodon (Teleostei: Cypriniformes)

  • Cho, Young-Sun;Bang, In-Chul;Lee, Il-Ro;Nam, Yoon-Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.12 no.3
    • /
    • pp.179-184
    • /
    • 2009
  • Hemibarbus mylodon (Cypriniformes) is an endemic freshwater fish species in the Korean peninsula, for which urgent conservation efforts are needed. To understand their stress responses in relation to metal toxicity and thermal elevation, we performed a real-time RT-PCR-based expression assay of hepatic copper/zinc-superoxide dismutase (Cu/Zn-SOD), a key antioxidant enzyme, in response to experimental heavy metal exposure or heat treatment. The transcription of hepatic Cu/Zn-SOD was differentially modulated by acute exposure to Cu, cadmium (Cd), or Zn. Exposure to each metal at $5{\mu}M$ for 24 h revealed that Cu stimulated the mRNA expression of Cu/Zn-SOD to a greater extent than the other two heavy metals. The elevation in Cu/Zn-SOD transcripts in response to Cu exposure was dose-dependent (0.5 to $5{\mu}M$). Time course analysis of Cu/Zn-SOD expression in response to Cd exposure ($5{\mu}M$) revealed a transient pattern up to day 7. Exposure to thermal stress (an increase from 22 to $30^{\circ}C$ at a rate of $1^{\circ}C/h$ followed by $30^{\circ}C$ for 18 h) did not significantly alter SOD transcription, although heat shock protein 90 kDa (HSP90) transcription was positively correlated with an increase in temperature.

Modeling the Present Probability of Urban Woody Plants in the face of Climate Change (기후변화에 따른 도시 수종의 기후 적합성 평가모델 - 서울시를 대상으로 -)

  • Kim, Yoon-Jung;Lee, Dong-Kun;Park, Chan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.1
    • /
    • pp.159-170
    • /
    • 2013
  • The effect of climate change on urban woody plants remains difficult to predict in urban areas. Depending on its tolerances, a plant species may stay and survive or stay with slowly declining remnant populations under a changing climate. To predict those vulnerabilities on urban woody plants, this study suggests a basic bioclimatic envelop model of heat requirements, cold tolerance, chilling requirements and moisture requirements that are well documented as the 'climatic niche'. Each component of the 'climatic niche' is measured by the warmth index, the absolute minimum temperature, the number of chilling weeks and the water balance. Regarding the utility of the developed model, the selected urban plant's present probabilities are suggested in the future climate of Seoul. Both Korea and Japan's thermal thresholds are considered for a plant's optimal climatic niche. By considering the thermal thresholds of these two regions for the same species, the different responses observed will reflect the plant's 'hardening' process in a rising climate. The model illustrated that the subpolar plants Taxus cuspidata and Ulmus davidiana var. japonica are predicted to have low suitability in Seoul. The temperate plants Zelkova serrata and Pinus densiflora, which have a broad climatic niche, exhibited the highest present probability in the future. The subtropical plants Camellia japonica and Castanopsis cuspidata var. sieboldii may exhibit a modest growth pattern in the late 21C's future climatic period when an appropriate frost management scheme is offered. The model can be used to hypothesize how urban ecosystems could change over time. Moreover, the developed model can be used to establish selection guidelines for urban plants with high levels of climatic adaptability.

A refined four variable plate theory for thermoelastic analysis of FGM plates resting on variable elastic foundations

  • Attia, Amina;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Mahmoud, S.R.;Alwabli, Afaf S.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.453-464
    • /
    • 2018
  • In this paper, an efficient higher-order shear deformation theory is presented to analyze thermomechanical bending of temperature-dependent functionally graded (FG) plates resting on an elastic foundation. Further simplifying supposition are made to the conventional HSDT so that the number of unknowns is reduced, significantly facilitating engineering analysis. These theory account for hyperbolic distributions of the transverse shear strains and satisfy the zero traction boundary conditions on the surfaces of the plate without using shear correction factors. Power law material properties and linear steady-state thermal loads are assumed to be graded along the thickness. Nonlinear thermal conditions are imposed at the upper and lower surface for simply supported FG plates. Equations of motion are derived from the principle of virtual displacements. Analytical solutions for the thermomechanical bending analysis are obtained based on Fourier series that satisfy the boundary conditions (Navier's method). Non-dimensional results are compared for temperature-dependent FG plates and validated with those of other shear deformation theories. Numerical investigation is conducted to show the effect of material composition, plate geometry, and temperature field on the thermomechanical bending characteristics. It can be concluded that the present theory is not only accurate but also simple in predicting the thermomechanical bending responses of temperature-dependent FG plates.

Suitability of Setting Summer Indoor Temperature for Thermal Comfort (여름철 실내 쾌적온도 설정 기준의 적합성)

  • Shim, Huen Sup;Jeong, Woon Seon
    • The Korean Journal of Community Living Science
    • /
    • v.24 no.4
    • /
    • pp.583-589
    • /
    • 2013
  • This study was to provide the information for optimum utilization of the air-conditioning system in the human health and energy saving perspective. Subjects were 17 male and female college students(7 males and 10 females) with normal weight. They wore a short sleeved shirt, knee length trousers, socks, and underwear(0.4clo). They were asked to choose the preferred temperature from different environmental temperatures($28^{\circ}C$, $25^{\circ}C$). The physiological responses were measured and the subjective sensation was voted during the step changes of environmental temperature, starting at $28^{\circ}C$ to $25^{\circ}C$ with $1^{\circ}C$ decrease every 20 minutes. The preferred temperature was $25.9{\pm}0.4^{\circ}C$ for males and $26.9{\pm}0.2^{\circ}C$ for females at $28^{\circ}C$ and $24.8{\pm}0.6^{\circ}C$ for males and $25.6{\pm}0.1^{\circ}C$ for females at $25^{\circ}C$. The preferred temperature decreased about $1.3^{\circ}C$ while the environmental temperature changed $3^{\circ}C$. During the environmental step changes, mean skin temperature decreased more in females while the oxygen uptake and rectal temperature were kept constant for both males and females. We found the preferred temperature was affected by the exposed temperature and the thermal sensation in the condition. Subjects preferred a lower environmental temperature when they were exposed to a lower temperature with cooler sensation. Therefore, in the perspective of human health and energy saving, it is recommended to start setting the air-conditioning temperature higher than the preferred temperature.

Characteristics of Acupuncture at LU10 on Abdominal Thermography of Health Subject (어제(魚際)(LU10) 자침(刺鍼)이 복부(腹部) 한열변화(寒熱變化)에 미치는 영향(影響))

  • Jeon Moon-Kee;Kim Jae-Hyo;Byun Kee-Won;Do Jin-Woo;Kim Kyung-Sik;Sohn In-Cheul
    • Korean Journal of Acupuncture
    • /
    • v.20 no.2
    • /
    • pp.1-20
    • /
    • 2003
  • This study was examined for characteristics of acupuncture of LU10 on the abdominal thermography of health subject. The volunteers who participating in this study had taken rest for 20 - 30 mins in room temperature $(23-25^{\circ}C)$ before the examination and informed them what to prohibit smoking, drinking and administration of drug for the previous day. The thermography of abdomen including a below part of the chest was taken using Infra-Red Imaging System (IR 2000, MEDI-CORE Co., Korea) by time interval of 15 minutes at 15 min before, just before and 15 min after, 30 min after and 45 min after acupuncture stimulation. Acupuncture was applied to both LU10 for 30 mins. The results showed that acupuncture of LU10 for 30 mins had more potencies of changes on all the ROIs of abdominal thermography than those of control group. Also, those responses were significantly clear at the A1, A3, A6, A7 and A9 areas. It was observed that the quantities of thermal changes following acupuncture of LU10 been increased significantly comparing that of control group at the all ROIs (region of interest). These effects have more potencies at the upper (A1 and A2) and below (A7, A8, A9) abdominal areas than midline ones (A4, A5, and A6). These results suggest that acupuncture of LU10 having the characteristics of controls of chill and fever (寒熱) may modulate thermal distributions and changes of abdominal areas including the below of chest.

  • PDF

Performance of steel beams at elevated temperatures under the effect of axial restraints

  • Liu, T.C.H.;Davies, J.M.
    • Steel and Composite Structures
    • /
    • v.1 no.4
    • /
    • pp.427-440
    • /
    • 2001
  • The growing use of unprotected or partially protected steelwork in buildings has caused a lively debate regarding the safety of this form of construction. A good deal of recent research has indicated that steel members have a substantial inherent ability to resist fire so that additional fire protection can be either reduced or eliminated completely. A performance based philosophy also extends the study into the effect of structural continuity and the performance of the whole structural totality. As part of the structural system, thermal expansion during the heating phase or contraction during the cooling phase in most beams is likely to be restrained by adjacent parts of the whole system or sub-frame assembly due to compartmentation. This has not been properly addressed before. This paper describes an experimental programme in which unprotected steel beams were tested under load while it is restrained between two columns and additional horizontal restraints with particular concern on the effect of catenary action in the beams when subjected to large deflection at very high temperature. This paper also presents a three-dimensional mathematical modelling, based on the finite element method, of the series of fire tests on the part-frame. The complete analysis starts with an evaluation of temperature distribution in the structure at various time levels. It is followed by a detail 3-D finite element analysis on its structural response as a result of the changing temperature distribution. The principal part of the analysis makes use of an existing finite element package FEAST. The effect of columns being fire-protected and the beam being axially restrained has been modelled adequately in terms of their thermal and structural responses. The consequence of the beam being restrained is that the axial force in the restrained beam starts as a compression, which increases gradually up to a point when the material has deteriorated to such a level that the beam deflects excessively. The axial compression force drops rapidly and changes into a tension force leading to a catenary action, which slows down the beam deflection from running away. Design engineers will be benefited with the consideration of the catenary action.

Long-Term Tropical Residency Diminishes Central Sudomotor Sensitivities in Male Subjects

  • Lee, Jeong-Beom;Bae, Jun-Sang;Shin, Young-Oh;Kang, Jong-Chul;Matsumoto, Takaaki;Toktasynovna, Aliopva Aziza;Kaimovich, Alipov Gabit;Kim, Wan-Jong;Min, Young-Ki;Yang, Hun-Mo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.6
    • /
    • pp.233-237
    • /
    • 2007
  • Tropical natives (TROP) are capable of tolerating tropical heat because of their long-term adaptation to tropical environments. When exposed to heat stress, these natives tend to respond with lower sweat output, which is generally thought to be the result of heat acclimatization. The main objective of this study was to clarify central mechanisms inherent to suppressed thermal sweating in tropical natives (Malaysians) by comparing their sweating responses to those of temperate native (TEMP) (Koreans). This experiment was conducted in a thermoneutral climatic chamber ($24{\pm}0.5^{\circ}C,\;40{\pm}3%$ relative humidity). Heat loads were applied to each subject by the immersion of their lower legs in a hot water bath ($43^{\circ}C$ for 30 min). Sweat onset-time and sweat volume were compared between TROP and TEMP. The sweat onset-times on four selected points on the body ranged from 10.25 to 13.47 min in TEMP subjects, and from 16.24 to 17.83 min in TROP subjects (p<0.001). The local sweat volumes at the same sites ranged from 4.30 to $9.74 mg/cm^2$ in TEMP subjects, and from between 1.80 to $4.40mg/cm^2$ in TROP subjects (p<0.001). These results demonstrated a significant difference between TROP and TEMP subjects with regard to the manner in which they regulate their body temperatures when exposed to heat loads, and verified that long-term thermal adaptation blunts sweating sensitivities.

Numerical and Experimental Study on Motion Response of 1MW OTEC Platform (1MW OTEC 구조물의 운동 응답에 대한 수치 및 모형시험 연구)

  • Kwon, Yong-Ju;Nam, Bo Woo;Kim, Namwoo;Jung, Dong-Ho;Hong, Sa Young;Kim, Hyeon-Ju
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.81-90
    • /
    • 2017
  • The 1MW OTEC (Ocean Thermal Energy Conversion) platform was designed for application in equatorial seas. In this study, the OTEC platform was investigated using numerical and experimental methods. An octagon-shaped OTEC platform was investigated using the Ocean Engineering Basin of KRISO. These experiments included various tests of regular waves, irregular waves and irregular waves with current (wave+current). The responses of the platform in regular waves showed good agreement between the numerical and experimental results, including the motion RAO, wave run up, and mean drift force. The peak period of heave and pitch motions were observed around 0.5 rad/s, and the effect of the total reflection was found under short wave conditions. The standard deviation (STD) of the platform motion was checked in irregular waves of equatorial and Hawaiian seas. The STD of the pitch was less than $4^{\circ}$ different from the operability requirement under equatorial conditions and the surge STD of the wave frequency showed good agreement between the numerical and experimental results. The STD values of the surge and pitch were increased 66.6% and 92.8% by the current effects in irregular waves, but the pitch STD was less than $4^{\circ}$ under equatorial conditions. This study showed that the STD of the surge was affected by spring effects. Thus, the watch circle of the platform and tension of the mooring lines must be evaluated for a specific design in the future.

A Study of Thermo-rheological Behaviour from Long Term Responses of Solid Composite Propellant (고체 추진제 장시간 물성거동 반응 연구)

  • Ryu, Taeha;Kim, Nakhyun;Khil, Taeock;Choi, Yongkyu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.1
    • /
    • pp.8-16
    • /
    • 2017
  • Structural integrity of solid rocket depends on the residual reactions between constituents of its composition(post cure, migration etc.), the oxygen(or anti-oxydent) in the free volume and humidity (desiccant) under the perfect sealed condition. Mechanical Properties of composite solid propellant arising from those factors are very complex. Moreover the propulsion are faced with thermal loads from diurnal & seasonal cycle till firing. In this study, the fast evaluation method of long term mechanical properties is suggested based on Thermo-Rheological Simplicity from curing oven to cool-down stage in view point of thermal stabilization. For this subject, endurance tester having temperature control capability are devised. From the results from incremental load and strain, non-linear characteristics are discussed.