• Title/Summary/Keyword: thermal responses

Search Result 432, Processing Time 0.023 seconds

Thermo-Mechanical Behavior of Short SMA Reinforced Polymeric Composite Using Shear tag Theory (전단지연 이론을 이용한 단섬유 형태의 SMA 보강 고분자 복합재료의 열변형 거동 해석)

  • Jeong, Tae-Heon;Lee, Dong-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.1001-1010
    • /
    • 1999
  • Thermo-mechanical behavior of discontinuous shape memory alloy(SMA) reinforced polymeric composite has been studied using modified shear lag theory and finite element(FE) analysis with 2-D multi-fiber model. The aligned and staggered models of short-fiber arrangement are employed. The effects of fiber overlap and aspect ratio on the thermomechanical responses such as the thermal expansion coefficient are investigated. It is found that the increase of both tensile stress(resistance stress) in SMA fiber and compressive stress in polymer matrix with increasing aspect ratio is the main cause of low thermal deformation of the composite.

Thermal buckling behaviour of shear deformable functionally graded single/doubly curved shell panel with TD and TID properties

  • Kar, Vishesh R.;Panda, Subrata K.;Mahapatra, Trupti R.
    • Advances in materials Research
    • /
    • v.5 no.4
    • /
    • pp.205-221
    • /
    • 2016
  • In this article, the buckling responses of functionally graded curved (spherical, cylindrical, hyperbolic and elliptical) shell panels under elevated temperature load are investigated numerically using finite element steps. The effective material properties of the functionally graded shell panel are evaluated using Voigt's micromechanical model through the power-law distribution with and without temperature dependent properties. The mathematical model is developed using the higher-order shear deformation theory in conjunction with Green-Lagrange type nonlinear strain to consider large geometrical distortion under thermal load. The efficacy of the proposed model has been checked and the effects of various geometrical and material parameters on the buckling load are analysed in details.

Characteristics of Thermal Environments and Evaluation of Thermal Comfort by Human Reponse Experiment in Winter (동계체감실험에 의한 온열환경 특성 및 쾌적성 평가)

  • 고경태;정성일;박종일;김경훈
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.04a
    • /
    • pp.291-295
    • /
    • 1998
  • The purpose of this Study was to determine thermal sensation and physiological responses for men in winter indoor environment, under various air temperature and relative humidity, with male university students. Subjective Evaluation, Heart Rate Variability(HRV), Electroencephalogram(EEG) were examined. We found that comfort of people was achieved at 50% R.H., 24$^{\circ}C$, and the difference of skin temperature was found at the calf area as air temperature changes. At low air temperature and low humidity, heart rate was decreased, but there was no change at brain wave, keeping ${\alpha}$-wave.

  • PDF

A Study on the Evaluation Methods of Indoor Thermal Environment in Office Building (사무소건축의 실내온열환경 평가방법에 대한 연구)

  • Choi, Young-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.4
    • /
    • pp.355-359
    • /
    • 2003
  • 1. The objective of this paper is to investigate the indoor environment from the viewpoint of interaction between physical environment and the human responses. 2. A continuous measurement has been carried out for 1 year and distribution of variables have been measured for 1 day. 3. The attitude of workers was investigated by a questionnaire. 4. As the result, average luminance represented more than 800-1800 lx in the office, in contrast with less than 1000 lx in the encourage luminance of an office. 5. There was a significant difference of the occupants' response to the light environment between the neighboring environments. 6. Measured thermal conditions are on the edge of the ASHRAE comfort envelope in summer, and in the neighborhood of the lower dry limit of the envelope in spring.

  • PDF

Mechanical and thermal stability investigation of functionally graded plates resting on elastic foundations

  • Houari, Ali;Benguediab, Mohamed;Bakora, Ahmed;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.423-434
    • /
    • 2018
  • In present work, both the hyperbolic shear deformation theory and stress function concept are used to study the mechanical and thermal stability responses of functionally graded (FG) plates resting on elastic foundation. The accuracy of the proposed formulation is checked by comparing the computed results with those predicted by classical plate theory (CPT), first-order shear deformation theory (FSDT) and higher-order shear deformation theory (HSDT). Moreover, results demonstrate that the proposed formulation can achieve the same accuracy of the existing HSDTs which have more number of governing equations.

Experimental Study on Thermal Comfort Sensation and Physiological Responses of Koreans in various Thermal Conditions Part IV : Effects of Draft on Thermal Comfor in convection Heating (한국인의 온열쾌적감 및 생리신호에 관한 연구 Part IV : 대류난방시 Draft가 온열쾌적감에 미치는 영향)

  • 김동규;최호선;이기섭;금종수;최광환;배동석;이구형
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1998.11a
    • /
    • pp.116-120
    • /
    • 1998
  • 난방.공조공간에서는 강한 기류가 Draft를 유발한다. Draft라 함은 인체가 기류(Air Movement)에 의해 원하지 않은 국부적인 냉각효과를 받는 것을 말한다(ASHRAE). 본 연구에서는 피험자의 체감실험을 통해 겨울철 대류난방시 실온 설정조건에 대한 기류속도의 허용범위을 찾고자 .하였다. 피험자는 일정 유니폼을 착용하고 의자에 앉은 상태로 실온 18.21.24$^{\circ}C$, 풍속 0.15.0.3.0.45m/s의 조건에서 기류감, 온냉감, 쾌불쾌감을 신고하였다. 실험시 착의량은 남자 0.7, 여자 1.0 clo이었으며, 실온이 21$^{\circ}C$일 때는 기류속도 0.15m/s까지, 실온이 24$^{\circ}C$일 때는 기류속도 0.3m/s까지 허용범위에 포함되었다.

  • PDF

A Study on Characteristics of Indoor Thermal Environment and Comfort Evaluation in Summer and Winter (하계 및 동계 실내 온열 환경 특성과 쾌적성 평가에 대한 연구)

  • 고경태;박종일;김경훈
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1998.11a
    • /
    • pp.88-93
    • /
    • 1998
  • The purpose of this study was to examine theory about indoor thermal comfort-environment as well as to determine thermal sensation and physical responses for men in summer and winter indoor environment, under various air temperature and relative humidity, with male university students. Subjective Evaluation, Heart rate(Electrocardiogram, ECG), Electroencephalo gram(EEG) were examined. We found that comfort of people was achieved at SET*. 24.7$^{\circ}C$, -0.82${\alpha}$-wave) both in summer and in winter.

  • PDF

Magnetothermoelastic stress in orthotropic hollow cylinders due to radially symmetric thermal and mechanical loads

  • Dai, H.L.;Fu, Y.M.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.6
    • /
    • pp.699-707
    • /
    • 2006
  • In the paper, a direct method of solution of the Navier equation is presented. An orthotropic thick hollow cylinder under a one-dimensional steady-state temperature distribution and a uniform magnetic field with general types of thermal and mechanical boundary conditions is considered. The Navier equation in terms of displacement is derived and solved analytically by the direct method, and magnetothermoelastic responses and perturbation of the magnetic field vector in the orthotropic thick hollow cylinder is described. The present method is suitable for orthotropic thick hollow cylinders placed in an axial magnetic field with arbitrary thermal and mechanical boundary conditions. Finally, numerical examples are carried out and discussed.

Material Recognition Using Temperature Response Curve Fitting and Fuzzy Neural Network

  • Young-C. Lim;Park, Jin-K;Ryoo, Young-J;Jang, Young-H;Kim, I-G.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1995.10b
    • /
    • pp.15-24
    • /
    • 1995
  • This paper describes a system that can be used to recognize an unknown material regardless of the fuzzy neural network(FNN). There are some problems to realize the recognition system using temperature response. It requires too many memories to store the vast temperature response data and it has to be filtered to remove noise which occurs in experiment. And the temperature response is influenced by the change of ambient temperature. So, this paper proposes a practical method using curve fitting to remove above problems of memories and noise. and FNN is proposed to overcome the problem caused by the change of ambient temperature. Using the FNN which is learned by temperature responses on fixed ambient. Temperatures and known thermal conductivity, the thermal conductivity of the material can be inferred on various ambient temperatures. So the material can be recognized by the thermal conductivity.

  • PDF

Transient wave propagation in piezoelectric hollow spheres subjected to thermal shock and electric excitation

  • Dai, H.L.;Wang, X.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.4
    • /
    • pp.441-457
    • /
    • 2005
  • An analytical method is presented to solve the problem of transient wave propagation in a transversely isotropic piezoelectric hollow sphere subjected to thermal shock and electric excitation. Exact expressions for the transient responses of displacements, stresses, electric displacement and electric potentials in the piezoelectric hollow sphere are obtained by means of Hankel transform, Laplace transform, and inverse transforms. Using Hermite non-linear interpolation method solves Volterra integral equation of the second kind involved in the exact expression, which is caused by interaction between thermo-elastic field and thermo-electric field. Thus, an analytical solution for the problem of transient wave propagation in a transversely isotropic piezoelectric hollow sphere is obtained. Finally, some numerical results are carried out, and may be used as a reference to solve other transient coupled problems of thermo-electro-elasticity.