• Title/Summary/Keyword: thermal power

Search Result 4,982, Processing Time 0.037 seconds

Evaluation of thermal embrittlement in 2507 super duplex stainless steel using thermoelectric power

  • Gutierrez-Vargas, Gildardo;Ruiz, Alberto;Kim, Jin-Yeon;Lopez-Morelos, Victor H.;Ambriz, Ricardo R.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1816-1821
    • /
    • 2019
  • This research investigates the feasibility of using the thermoelectric power to monitor the thermal embrittlement in 2507 super duplex stainless steel (SDSS) exposed to a temperature between $280^{\circ}C$ and $500^{\circ}C$. It is well known that the precipitation of Cr-rich ${\alpha}^{\prime}$ phase as a result of the spinodal decomposition is the major cause of the embrittlement and the loss of corrosion resistance in this material. The specimens are thermally aged at $475^{\circ}C$ for different holding times. A series of mechanical testing including the tensile test, Vickers microhardness measurement, and Charpy impact test are conducted to determine the property changes with holding time due to the embrittlement. The mechanical strengths and ferrite hardness exhibit very similar trends. Scanning electron microscopy images of impactfractured surfaces reveal a ductile to brittle transition in the fracture mode as direct evidence of the embrittlement. It is shown that the thermoelectric power is highly sensitive to the thermal embrittlement and has an excellent linear correlation with the ferrite hardness. This paper, therefore, demonstrates that the thermoelectric power is an excellent nondestructive evaluation technique for detecting and evaluating the $475^{\circ}C$ embrittlement of field 2507 SDSS structures.

Analysis of Energy Losses in a Natural Gas Spark Ignition Engine for Power Generation (천연가스 스파크점화 엔진 발전기에서의 에너지 손실 분석)

  • Park, Hyunwook;Lee, Junsun;Oh, Seungmook;Kim, Changup;Lee, Yongkyu;Kang, Kernyong
    • Journal of ILASS-Korea
    • /
    • v.25 no.4
    • /
    • pp.170-177
    • /
    • 2020
  • Stoichiometric combustion in spark ignition (SI) engines has an advantage of meeting future stringent emission regulations. However, the drawback of the combustion is a lower thermal efficiency than that of lean burn. In this study, energy losses in a natural gas stoichiometric SI engine generator were analyzed to establish a strategy for improving the generating efficiency (GE). The energy losses were investigated based on dynamometer and load bank experiments. As the intake manifold pressure increased in the dynamometer experiment, the brake thermal efficiency (BTE) increased mainly due to the reduction in the pumping and mechanical losses. In the load bank experiment, the generating power and GE increased with the increased intake manifold pressure. The generating power and GE were lower than the brake power and BTE due to the cooling fan power and the losses in the generator.

Development of dynamic motion models of SPACE code for ocean nuclear reactor analysis

  • Kim, Byoung Jae;Lee, Seung Wook
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.888-895
    • /
    • 2022
  • Lately, ocean nuclear power plants have attracted attention as one of diverse uses of nuclear power plants. Because ocean nuclear power plants are movable or transportable, it is necessary to analyze the thermal hydraulics in a moving frame of reference, and computer codes have been developed to predict thermal hydraulics in large moving systems. The purpose of this study is to incorporate a three dimensional dynamic motion model into the SPACE code (Safety and Performance Analysis CodE) so that the code is able to analyze thermal hydraulics in an ocean nuclear power plant. A rotation system that describes three-dimensional rotations about an arbitrary axis was implemented, and modifications were made to the one-dimensional momentum equations to reflect the rectilinear and rotational acceleration effects. To demonstrate the code's ability to solve a problem utilizing a rotational frame of reference, code calculations were conducted on various conceptual problems in the two-dimensional and three-dimensional pipeline loops. In particular, the code results for the three-dimensional pipeline loop with a tilted rotation axis agreed well with the multi-dimensional CFD results.

An evaluation of power conversion systems for land-based nuclear microreactors: Can aeroderivative engines facilitate near-term deployment?

  • Guillen, D.P.;McDaniel, P.J.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1482-1494
    • /
    • 2022
  • Power conversion cycles (Subcritical Steam, Supercritical Steam, Open Air Brayton, Recuperated Air Brayton, Combined Cycle, Closed Brayton Supercritical CO2 (sCO2), and Stirling) are evaluated for land-based nuclear microreactors based on technical maturity, system efficiency, size, cost and maintainability, safety implications, and siting considerations. Based upon these criteria, Air Brayton systems were selected for further evaluation. A brief history of the development and applications of Brayton power systems is given, followed by a description of how these thermal-to-electrical energy conversion systems might be integrated with a nuclear microreactor. Modeling is performed for optimized cycles operating at 3 MW(e) with turbine inlet temperatures of 500 ℃, 650 ℃ and 850 ℃, corresponding to: a) sodium fast, b) molten salt or heat pipe, and c) helium or sodium thermal reactors, coupled with three types of Brayton power conversion units (PCUs): 1) simple open-cycle gas turbine, 2) recuperated open-cycle gas turbine, and 3) recuperated and intercooled open-cycle gas turbine. Aeroderivative turboshaft engines employing the simple Brayton cycle and two industrial gas turbine engines employing recuperated air Brayton cycles are also analyzed. These engines offer mature technology that can facilitate near-term deployment with a modest improvement in efficiency.

Vibrations and thermal stability of functionally graded spherical caps

  • Prakash, T.;Singh, M.K.;Ganapathi, M.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.4
    • /
    • pp.447-461
    • /
    • 2006
  • Here, the axisymmetric free flexural vibrations and thermal stability behaviors of functionally graded spherical caps are investigated employing a three-noded axisymmetric curved shell element based on field consistency approach. The formulation is based on first-order shear deformation theory and it includes the in-plane and rotary inertia effects. The material properties are graded in the thickness direction according to the power-law distribution in terms of volume fractions of the constituents of the material. The effective material properties are evaluated using homogenization method. A detailed numerical study is carried out to bring out the effects of shell geometries, power law index of functionally graded material and base radius-to-thickness on the vibrations and buckling characteristics of spherical shells.

Determination of optimal unit commitment and load dispatch for thermal power system by DP method (DP법에 의한 화력계통의 최적병렬치수 결정 및 부하배분)

  • 양흥석;이문호
    • 전기의세계
    • /
    • v.21 no.2
    • /
    • pp.34-40
    • /
    • 1972
  • This paper describes the problem of the shortange-economic-scheduling for unit commitment and load dispatching in thermal power system. For economic operation of thermal system, the optimum time of startup and shoutdown of the generating unit must be determined so as to minimize the sum of generating and starting fuel cost over a given period. The above problems are analyzed for the purpose of the application of Dynamic Programing Method. Also the technique of Dynamic Programming is applied to the problems. For the illustative purpose, a case study was made on a model system composed of eight units and the computing time was about 190 seconds by IBM 360-40 system. Therefore, one can utilize this suggested method on any of the practical power systems.

  • PDF

Cooling effect of an electronic module with a variation of the inlet air temperature (유입공기의 온도변화가 전자모듈의 냉각에 미치는 영향)

  • 이진호;조성훈
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.264-273
    • /
    • 2001
  • The conjugate heat transfer from a protruding module in a horizontal channel with a variation of air temperature is experimentally investigated. It is an aim of this study is to estimate temperature difference between a module and air. This study is performed with a variation of parameters that are air temperatures($T_i,=25^{\circ}C{\sim}55^{\circ}C),$ thermal resistance($R_c=158 K/W),$ air velocities ( 4V_i=0.1$ m/s~l.5 m/s ), and input power (Q=3 W, 7 W ). The results show that as the thermal resistance increases, the effect of air temperatures are decreased. And input power was most effective parameter on the temperature difference between a module and air.

  • PDF

345kV Overhead Transmission Line Collapse Analysis and Countermeasures (345kV 인천화력 송전선로 철탑도괴 원인분석 및 대책)

  • Park, Jae-Ung;Shin, Tai-Woo;Choi, Jin-Sung;Choi, Han-Yeol;Min, Byeong-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.531-535
    • /
    • 2010
  • 345kV Incheon Thermal Power Plant Transmission Line Collapse Analysis and Countermeasures. The Typhoon Galmaegi which had been formed in July 15, 2008 diminished into a tropical cyclone and cooled the air above the West Sea. The cooled air colliding with the warm inland air caused a strong whirlwind at some places in the west seaside; the whirlwind battered the 345kV Incheon Thermal Power Plant Transmission Line to be collapsed. The resistance of transmission towers against wind pressure, one of the key elements in transmission line engineering, is designed to endure the pressure corresponding to the maximum instantaneous wind speed. Before the above accident happened, no transmission line has ever been collapsed by a whirlwind. So this paper is aimed to analyze causes that collapsed 345kV Incheon Thermal Power Plant transmission line and to introduce countermeasures.

The Design of Power Amplifier using Temperature Memory Effect Compensation (열잡음 메모리 효과 제거기를 이용한 전력증폭기의 효율 개선)

  • Ko, Young-Eun;Lee, Ji-Young
    • The Journal of Information Technology
    • /
    • v.10 no.3
    • /
    • pp.47-58
    • /
    • 2007
  • In this paper, we designed and manufactured the distortion-cancellation module which is able to compensate thermal-noise distortion by software. The distortion-cancellation algorithm not only bring forth system non-linear distortion by input level but also bring compensate component of distortion by thermal to get rid off distortion from now on. After TMS 320C6711 DSP to recognize our algorithm, we manufactured the module for every kinds of system. To evaluate efficiency of the distortion-cancellation module, we designed and manufactured communication system. By measured result, if system output power is -3dBm equally, 12dB of ACLR has improved in 1MHz away from a center frequency, and also gain has increased up to 0.5dB.

  • PDF

Analysis and Countermeasures of 345kV Incheon-TP Overhead Transmission Lines Collapse (345kV 인천화력 송전선로 철탑도괴 원인분석 및 대책)

  • Min, Byeong-Wook;Shin, Tai-Woo;Choi, Jin-Sung;Choi, Han-Yeol;Park, Jae-Ung
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.323_324
    • /
    • 2009
  • 345kV Incheon Thermal Power Plant Transmission Line Collapse Analysis and Countermeasures. The Typhoon Galmaegi which had been formed in July 15, 2008 diminished into a tropical cyclone and cooled the air above the West Sea. The cooled air colliding with the warm inland air caused a strong whirlwind at some places in the west seaside; the whirlwind battered the 345kV Incheon Thermal Power Plant Transmission Line to be collapsed. The resistance against wind pressure, one of the key elements in transmission line engineering, is designed to endure the pressure corresponding to the maximum instantaneous wind speed. Before the above accident happened, no transmission line has ever been collapsed by a whirlwind. So this paper is aimed to analyze causes that collapsed 345kV Incheon Thermal Power Plant transmission line and to introduce countermeasures.

  • PDF