• Title/Summary/Keyword: thermal oxide film

Search Result 424, Processing Time 0.024 seconds

Characteristics of High Temperature Oxide Thin Film Using Dichlorosilane Gas (Dichlorosilane Gas를 이용한 High Temperature Oxide Thin Film의 특성)

  • 이승석;이석희;김종철;박헌섭;오계환
    • Journal of the Korean Vacuum Society
    • /
    • v.1 no.1
    • /
    • pp.190-197
    • /
    • 1992
  • In this study we have investigated physical and electrical properties of high temperature oxide (HTO) thin film using dichlorosilane (DCS) gas. This film had low etch rate and excellent step coverage, and its characteristics of Si-O bond were similar to those of thermal oxide. I-V curves also showed similar electrical properties to those of thermally grown oxide (SiO2) while time dependent dielectric breakdown (TDDB) results revealed 1/4 value of thermal oxide. However, defect density was measured to be much lower value than that of thermal oxide.

  • PDF

Electrical Properties of Thin $SiO_2$ Film by Rapid Thermal Process (Rapid Thermal Process에 의해 형성시킨 얇은 산화막의 전기적 특성)

  • Lee, Cheol-Jin;Sung, Man-Young;Sung, Young-Kwon
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.246-248
    • /
    • 1994
  • The Electrical properties of thin $SiO_2$ film by rapid thermal processing have been investigated and this film has been compared with thermal $SiO_2$ film by furnace. The RTO(rapid thermal oxide) film annealed in Ar ambient represent more superior properties than thermal $SiO_2$ film by furnace at breakdown field and leakage current. The RTO(rapid thermal oxide) film annealed in $NH_3$ ambient represent more inferior properties than thermal $SiO_2$ film by furnace at electrical properties, but the capacitance was improved 15-25% than the conventional oxide film.

  • PDF

Effect of a seed layer on atomic layer deposition-grown tin oxide

  • Choi, Woon-Seop
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.128-128
    • /
    • 2009
  • The effect of seed layer on the preparation of tin oxide thin film by ALD using tetrakis(ethylmethylamino) tin precursor was examined. The average growth rate of tin oxide film is about 1.4 A/cycle from $50^{\circ}C$ to $150^{\circ}C$. The rate rapidly decreases at the substrate temperature at $200^{\circ}C$. The seed effect was not observed in crystal growth of thin oxide. However, the crystalline growth of seed material in tin oxide was detected by thermal annealing. ALD-grown seeded tin oxide thin film after thermal annealed was characterized by ellipsometry, XRD, AFM and XPS.

  • PDF

P-type transport characteristics of copper-oxide thin films deposited by vacuum thermal evaporation (진공열증착으로 성막된 산화구리 박막의 p-형 전도특성)

  • Lee, Ho-Nyeon;Song, Byeong-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2267-2271
    • /
    • 2011
  • This study was focused on getting p-type copper-oxide thin-film semiconductors suitable for p-channel thin-film transistors. Vacuum thermal evaporation and thermal annealing were used to get copper-oxide thin-film semiconductor having properties adoptable as an active layer of thin-film transistors. n-type thin films having electron carrier density of about $10^{22}\;cm^{-3}$ before thermal annealing was converted to p-type thin films having hole carrier density of about $10^{16}\;cm^{-3}$ as the thermal annealing conditions were optimized.

A study on Electronic Properties of Passive Film Formed on Ti

  • Kim, DongYung;Kwon, HyukSang
    • Corrosion Science and Technology
    • /
    • v.2 no.5
    • /
    • pp.212-218
    • /
    • 2003
  • Electronic properties of passive films formed on Ti at film formation potentials $(E_f)V_{SCE}$ in pH 8.5 buffer solution and in an artificial seawater were examined through the photocurrent measurement and Mott-Schottky analysis. The passive films formed on Ti in pH 8.5 buffer solution exhibited a n-type semiconductor with a band gap energys $(E_g);E_g^{n=2}=3.4$ eV for nondirect electron transition, and $E_g^{n=0.5}=3.7$ eV for direct electron transition. These band gap values were almost same as those for the passive films formed in artificial seawater, indicating that chloride ion ($Cl^-$ in solution did not affect the electronic structure of the passive film on Ti. $E_g$ for passive films formed on Ti were found to be greater than those ($E_g^{n=0.5}=3.1$ eV, $E_g^{n=2}=3.4$) for a thermal oxide film formed on Ti in air at $400^{\circ}C$. The disorder energy of passive film, determined from the absorption tail of photocurrent spectrum, was much greater than that for the thermal oxide film farmed on Ti in air at $400^{\circ}C$. The greater $E_g$ and the higher disorder energy for the passive film compared with those for the thermal oxide fIlm suggest that the passive film on Ti exhibited more disorded structure than the thermal oxide film. The donor density (about $2.4{\times}10^{20}cm^{-3}$) for the passive film formed in artificial seawater was greater than that (about $20{\times}10^{20}cm^{-3}$) formed in pH 8.5 buffer solution, indicating that $Cl^-$ increased the donor density for the passive film on Ti.

Selective Laser Direct Patterning of Indium Tin Oxide on Transparent Oxide Semiconductor Thin Films

  • Lee, Haechang;Zhao, Zhenqian;Kwon, Sang Jik;Cho, Eou Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.6-11
    • /
    • 2019
  • For a wider application of laser direct patterning, selective laser ablation of indium tin oxide (ITO) film on transparent oxide semiconductor (TOS) thin film was carried out using a diode-pumped Q-switched Nd:YVO4 laser at a wavelength of 1064 nm. In case of the laser ablation of ITO on indium gallium zinc oxide (IGZO) film, both of ITO and IGZO films were fully etched for all the conditions of the laser beams even though IGZO monolayer was not ablated at the same laser beam condition. On the contrary, in case of the laser ablation of ITO on zinc oxide (ZnO) film, it was possible to etch ITO selectively with a slight damage on ZnO layer. The selective laser ablation is expected to be due to the different coefficient of thermal expansion (CTE) between ITO and ZnO.

Study of Low Temperature Solution-Processed Al2O3 Gate Insulator by DUV and Thermal Hybrid Treatment (DUV와 열의 하이브리드 저온 용액공정에 의해 형성된 Al2O3 게이트 절연막 연구)

  • Jang, Hyun Gyu;Kim, Won Keun;Oh, Min Suk;Kwon, Soon-Hyung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.4
    • /
    • pp.286-290
    • /
    • 2020
  • The formation of inorganic thin films in low-temperature solution processes is necessary for a wide range of commercial applications of organic electronic devices. Aluminum oxide thin films can be utilized as barrier films that prevent the deterioration of an electronic device due to moisture and oxygen in the air. In addition, they can be used as the gate insulating layers of a thin film transistor. In this study, aluminum oxide thin film were formed using two methods simultaneously, a thermal process and the DUV process, and the properties of the thin films were compared. The result of converting aluminum nitrate hydrate to aluminum oxide through a hybrid process using a thermal treatment and DUV was confirmed by XPS measurements. A film-based a-IGZO TFT was fabricated using the formed inorganic thin film as a gate insulating film to confirm its properties.

Characteristics of Reoxidized-Nitrided-Oxide Films Prepared by Sequential Rapid Thermal Oxidation and Nitridation (연속적 급속열처리법에 의한 재산화질화산화막의 특성)

  • 노태문;이경수;이중환;남기수
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.5
    • /
    • pp.729-736
    • /
    • 1990
  • Oxide (RTO), nitrided-oxide(NO), and reoxidized-nitrided-oxide(ONO) films were formed by sequential rapid thermal processing. The film composition was investigated by Auger electron spectroscopy(AES). The Si/SiO2 interface and SiO2 surface are nitrided more preferentially than SiO2 bulk. When the NO is reoxidized, [N](atomic concentration of N) in the NO film decreased` especially, the decrease of [N] at the surface is considerable. The weaker the nitridation condition is, the larger the increase of thickness is as the reoxidation proceeds. The elelctrical characteristics of RTO, NO, and ONO films were evaluated by 1-V, high frequency (1 MHz) C-V, and high frequency C-V after constant current stress. The ONO film-which has 8 nm thick initial oxide, nitrided in NH3 at 950\ulcorner for 60 s, reoxidized in O2 at 1100\ulcorner for 60 s-shows good electrical characteristics such as higher electrical breakdown voltage and less variation of flat band voltage under high electric field than RTO, and NO films.

  • PDF

Preparation and Evaluation of the Properties of Al-doped Zinc Oxide (AZO) Films Deposition by Rapid Thermal Annealing (급속 열처리 방법에 의한 Al-doped Zinc Oxide (AZO) Films의 제조 및 특성 평가)

  • Kim, Sung-Jin;Choi, Kyoon;Choi, Se-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.7
    • /
    • pp.543-551
    • /
    • 2012
  • In this study, transparent conducting Al-doped Zinc Oxide (AZO) films with a thickness of 150 nm were prepared on corning glass substrate by the RF magnetron sputtering with using a Al-doped zinc oxide (AZO), ($Al_2O_3$: 2 wt%) target at room temperature. This study investigated the effect of rapid thermal annealing temperature and oxygen ambient on structural, electrical and optical properties of Al-doped zinc oxide (AZO) thin films. The films were annealed at temperatures ranging from 400 to $700^{\circ}C$ by using Rapid thermal equipment in oxygen ambient. The effect of RTA treatment on the structural properties were studied by x-ray diffraction and atomic force microscopy. It is observed that the Al-doped zinc oxide (AZO) thin film annealed at $500^{\circ}C$ at 5 minute oxygen ambient gas reveals the strongest XRD emission intensity and narrowest full width at half maximum among the temperature studied. The enhanced UV emission from the film annealed at $500^{\circ}C$ at 5 minute oxygen ambient gas is attributed to the improved crystalline quality of Al-doped zinc oxide (AZO) thin film due to the effective relaxation of residual compressive stress and achieving maximum grain size.

Preparation of LaGaO3 Based Oxide Thin Film on Porous Ni-Fe Metal Substrate and its SOFC Application

  • Ju, Young-Wan;Matsumoto, Hiroshige;Ishihara, Tatsumi;Inagaki, Toru;Eto, Hiroyuki
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.12
    • /
    • pp.796-801
    • /
    • 2008
  • $LaGaO_3$ thin film was prepared on Ni-Fe metal porous substrate by Pulsed Laser Deposition method. By the thermal reduction, the dense $NiO-{Fe_3}{O_4}$ substrate is changed to a porous Ni-Fe metal substrate. The volumetric shrinkage and porosity of the substrate are controlled by the reduction temperature. It was found that a thermal expansion property of the Ni-Fe porous metal substrate is almost the same with that of $LaGaO_3$ based oxide. $LaGaO_3$ based electrolyte films are prepared by the pulsed laser deposition (PLD) method. The film composition is sensitively affected by the deposition temperature. The obtained film is amorphous state after deposition. After post annealing at 1073K in air, the single phase of $LaGaO_3$ perovskite was obtained. Since the thermal expansion coefficient of the film is almost the same with that of LSGM film, the obtained metal support LSGM film cell shows the high tolerance against a thermal shock and after 6 min startup from room temperature, the cell shows the almost theoretical open circuit potential.