DOI QR코드

DOI QR Code

Preparation and Evaluation of the Properties of Al-doped Zinc Oxide (AZO) Films Deposition by Rapid Thermal Annealing

급속 열처리 방법에 의한 Al-doped Zinc Oxide (AZO) Films의 제조 및 특성 평가

  • Kim, Sung-Jin (Department of Advanced Materials Science and Engineering, Yonsei University) ;
  • Choi, Kyoon (Ceramic Engineering Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Choi, Se-Young (Department of Advanced Materials Science and Engineering, Yonsei University)
  • 김성진 (연세대학교 신소재공학과) ;
  • 최균 (한국세라믹기술원 엔지니어링 세라믹센터) ;
  • 최세영 (연세대학교 신소재공학과)
  • Received : 2012.04.16
  • Accepted : 2012.06.15
  • Published : 2012.07.01

Abstract

In this study, transparent conducting Al-doped Zinc Oxide (AZO) films with a thickness of 150 nm were prepared on corning glass substrate by the RF magnetron sputtering with using a Al-doped zinc oxide (AZO), ($Al_2O_3$: 2 wt%) target at room temperature. This study investigated the effect of rapid thermal annealing temperature and oxygen ambient on structural, electrical and optical properties of Al-doped zinc oxide (AZO) thin films. The films were annealed at temperatures ranging from 400 to $700^{\circ}C$ by using Rapid thermal equipment in oxygen ambient. The effect of RTA treatment on the structural properties were studied by x-ray diffraction and atomic force microscopy. It is observed that the Al-doped zinc oxide (AZO) thin film annealed at $500^{\circ}C$ at 5 minute oxygen ambient gas reveals the strongest XRD emission intensity and narrowest full width at half maximum among the temperature studied. The enhanced UV emission from the film annealed at $500^{\circ}C$ at 5 minute oxygen ambient gas is attributed to the improved crystalline quality of Al-doped zinc oxide (AZO) thin film due to the effective relaxation of residual compressive stress and achieving maximum grain size.

Keywords

References

  1. K. Zhang, F. Zhu, C. H. A. Huan, and A. T. S. Wee, J. Appl. Phys., 86, 74 (1999).
  2. R. B. H. Tahar, T, Ban, and Y. Takahashi, J. Appl. Phys., 83, 2631 (1998). https://doi.org/10.1063/1.367025
  3. D. K. Hwang, J. KIEEME, 15, 35 (2002).
  4. V. Bhosle, J. T. Prater, F. Yang, D. Burk, S. R. Forrest, and J. Narayan, J. Appl. Phys., 102, 023501 (2007). https://doi.org/10.1063/1.2750410
  5. J. F. Chang and M. H. Hon, Thin Solid Films, 386, 79 (2001). https://doi.org/10.1016/S0040-6090(00)01891-5
  6. J. P. Wiff, Y. Kinemuchi, and K, Wateri, Mater. Lett., 63, 2470 (2009). https://doi.org/10.1016/j.matlet.2009.08.036
  7. K. Y. Cheong, N. Muti, and S. R. Ramanan, Thin Solid Films, 10, 142 (2002).
  8. S. H. Cho, Journal of the Korean Vacuum Society, 18 (2009).
  9. K. Daoudi, S. Sandu, V. S. Teodorescu, C. Ghica, B. Canut, M. G. Blanchin, J. A. Roger, M. Oueslati, and B. Bessais, Cryst. Eng., 5, 187 (2002). https://doi.org/10.1016/S1463-0184(02)00028-X
  10. W. Water and S. Y Chu, Mater. Lett., 55, 67 (2002). https://doi.org/10.1016/S0167-577X(01)00621-8
  11. T. Shimomura, D. Kim, and M. Nakayma, J. Lumin., 112, 191 (2005). https://doi.org/10.1016/j.jlumin.2004.09.054
  12. Y. H. Kim and S. I. Kim, Journal of the Korean Vacuum Society, 18 (2009).
  13. N. Savargaonkar, B. C. Kahanra, M. Pruski, and T. S. King, J. Catal., 162, 277 (1996). https://doi.org/10.1006/jcat.1996.0285
  14. N. Fujjmura, T. Nishihara, S. Goto, J. Xu, and T. Ito, J. Cryst. Growth, 130, 269 (1993). https://doi.org/10.1016/0022-0248(93)90861-P
  15. C. Guillen and J. Herrero, Surf. Coat. Tech., 201, 309 (2006). https://doi.org/10.1016/j.surfcoat.2005.11.114
  16. S. Takada, J. Appl. Phys., 73, 4739 (1993). https://doi.org/10.1063/1.354091
  17. Y. Lin. J. Xie, H. Wang, Y. Li, C. Chaves, S. Lee, S. R. Foltyn, S. A. Crookerm, A. K. Burrel, T. M. McCleskey, and Q. X. Jia, Thin Solid Films, 101, 492 (2005).
  18. K. M. Kim, E. M. Jin, and C. B. Park, J. KIEEME, 19, 10 (2006).
  19. X. Z. Qiang, D. Hong, L. Yan, and C. Hang, Mat. Sci. Semicon. Proc., 9, 132 (2006). https://doi.org/10.1016/j.mssp.2006.01.082
  20. K. Ellmer, R. Mientus, Thin Solid Films, 516, 215 (2008).
  21. K. Ito and T. Nakazawa, Jpn. J. Appl. Phys., 124, 215 (1983).
  22. K. K. Kim, H. Tampo, J. O. Song, T. Y. Seong, S. J. Park, J. M. Lee, S. W. Kim, S. Fujita, and S. Niki, Jpn. J. Appl. Phys., 44, 4776 (2005). https://doi.org/10.1143/JJAP.44.4776
  23. Y. Lin, J. Xie, H. Wang, Y. Li, C. Chavez, S. Lee, S. R. Foltyn, S. A. Crooker, A. K. Burrell, T. M. McCleskey, and Q. X. Jia, Thin Solid Films, 101, 492 (2005).
  24. Z. Fang, Y. Wang, D. Xu, Y. Tan, and X. Liu, Opt. Mater., 26, 239 (2004). https://doi.org/10.1016/j.optmat.2003.11.027
  25. Y. H. Jung, E. S. Lee, B. Munir, R. A. Wibowo, and K. H. Kim, J. Kor. Inst. Surf. Eng., 38, 150 (2005).
  26. L. Y. Chen, W. H. Chen, J. J. Wang, F. C. NanHong, and Y. K. Su. Appl. Phys. Lett., 85, 5628 (2004). https://doi.org/10.1063/1.1835991
  27. B. Y. Oh, M, C. Jeong, D. S. Kim, W. Lee, and J. M. Myoung, J. Cryst. Growth, 281, 475 (2005). https://doi.org/10.1016/j.jcrysgro.2005.04.045
  28. Z. Y. Ning, S. H. cheng, S. B. Ge, Y. Chan, Z. Q. Gang, Y. X Zhang, and Z. G. Liu, Thin Solid Films, 307, 50 (1997). https://doi.org/10.1016/S0040-6090(97)00303-9