• Title/Summary/Keyword: thermal inertia

Search Result 93, Processing Time 0.024 seconds

Simulation of Ceramic Powder Injection Molding Process to Clarify the Change of Sintering Shrinkage Depending on Flow Direction (유동방향과 밀도이방성 분석을 위한 세라믹 분말사출성형 해석)

  • Kwak, Tae-Soo;Seo, Won-Seon
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.3
    • /
    • pp.229-233
    • /
    • 2009
  • This study has focused on manufacturing technique of powder injection molding of watch case made from zirconia powder. A series of computer simulation process was applied to prediction of the flow pattern in the inside of the mould to clarifying the change of sintering shrinkage depended on flow direction. The material properties of melted feedstock inclusive of the PVT graph and thermal viscosity flowage properties were measured for obtaining the input data in computer simulation. Also, molding experiment was conducted and the results of experiment showed that good agreement with simulation results for flow pattern and weld line location. On the other hand, gravity and inertia effect have an influence on velocity of melt front because of high density of ceramic powder particles in powder injection molding against the polymer injection molding process. In the experiment, the position of melt front was compared with upper gate and lower gate position. The gravity and inertia effect could be confirmed in the experimental results.

Design of Sound Absorbing System Using the Array of Upright Punching Plates (직립 타공판 배열을 이용한 흡음장치 설계)

  • 이종무;조일형;임용곤
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.386-391
    • /
    • 2000
  • Due to its characteristics of acoustic wave energy absorption, punched structures are generally applied on the wall of anechoic room. When the acoustic wave propagates through the punched plates, its energy dissipates into thermal energy by flow separation induced from the viscosity of acoustic media. The acoustic pressure difference between the for-side and the aft-side of punched plate ran be represented by the sum of drag term proportional to square of velocity and inertia term proportional to acceleration. The way to get the coefficients of the terms by an experiment or relatively simple calculation is introduced.

  • PDF

Ceramic injection molding of the watch case composed by zirconia$(ZrO_2)$ powder (지르코니아$(ZrO_2)$ 분말을 이용한 시계케이스의 세라믹 사출성형)

  • Kwak T.S.;Shin H.Y.;Lim J.I.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.275-278
    • /
    • 2005
  • This study has focused on manufacturing technique of powder injection molding of watch case which made from zirconia powder. A series of computer simulation process was applied to prediction of the flow pattern in the inside of the mould and defects as weld line. The material properties of melted feedstock inclusive of the PVT graph and thermal viscosity flowage properties were measured for obtaining the input data in computer simulation. Also, molding experiment was conducted and the results of experiment showed that good agreement with simulation results far flow pattern and weld line location. On the other hand, gravity and inertia effect have an influence on velocity of melt front because of high density of ceramic powder particles in powder injection molding against the polymer injection molding process. In the experiment, the position of melt front was compared with upper gate and lower gate position. The gravity and inertia effect could be confirmed in the experimental results.

  • PDF

Vibration and stability of initially stressed sandwich plates with FGM face sheets in thermal environments

  • Chen, Chun-Sheng;Liu, Fwu-Hsing;Chen, Wei-Ren
    • Steel and Composite Structures
    • /
    • v.23 no.3
    • /
    • pp.251-261
    • /
    • 2017
  • In this paper, thermal effect on the vibration and stability of initially stressed sandwich plates with functionally graded material (FGM) face sheets is analyzed. Material properties of FGM face sheet are graded continuously in the thickness direction. The variation of FGM properties assumes a simple power law distribution in terms of the volume fractions of the constituents. The governing equations of arbitrarily initially-stressed sandwich plates including the effects of transverse shear deformation and rotary inertia are derived. The initial stress is taken to be a combination of a uniaxial extensional stress and a pure bending stress in the examples. The eigenvalue problems are formed to study the vibration and buckling characteristics of simple supported initially stressed FGM/metal/FGM plates. The effects of volume fraction index, temperature rise, initial stress and layer thickness of metal on the natural frequencies and buckling loads are investigated. The results reveal that the volume fraction index, initial stresses and layer thickness of metal have significant influence on the vibration and stability of sandwich plates with FGM face sheets.

Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT

  • Semmah, Abdelwahed;Heireche, Houari;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.7 no.2
    • /
    • pp.89-98
    • /
    • 2019
  • In this work, the thermal buckling characteristics of zigzag single-walled boron nitride (SWBNNT) embedded in a one-parameter elastic medium modeled as Winkler-type foundation are investigated using a nonlocal first-order shear deformation theory (NFSDT). This model can take into account the small scale effect as well as the transverse shear deformation effects of nanotubes. A closed-form solution for nondimensional critical buckling temperature is obtained in this investigation. Further the effect of nonlocal parameter, Winkler elastic foundation modulus, the ratio of the length to the diameter, the transverse shear deformation and rotary inertia on the critical buckling temperature are being investigated and discussed. The results presented in this paper can provide useful guidance for the study and design of the next generation of nanodevices that make use of the thermal buckling properties of boron nitride nanotubes.

Thermoelastic eigenfrequency of pre-twisted FG-sandwich straight/curved blades with rotational effect

  • Souvik S. Rathore;Vishesh R. Kar;Sanjay
    • Structural Engineering and Mechanics
    • /
    • v.86 no.4
    • /
    • pp.519-533
    • /
    • 2023
  • This work focuses on the dynamic analysis of thermal barrier coated straight and curved turbine blades modelled as functionally graded sandwich panel under thermal environment. The pre- twisted straight/curved blade model is considered to be fixed to the hub and, the complete assembly of the hub and blade are assumed to be rotating. The functionally graded sandwich composite blade is comprised of functionally graded face-sheet material and metal alloy core. The constituents' material properties are assumed to be temperature-dependent, however, the overall properties are evaluated using Voigt's micromechanical scheme in conjunction with the modified power-law functions. The blade model kinematics is based on the equivalent single-layer shear deformation theory. The equations of motion are derived using the extended Hamilton's principle by including the effect of centrifugal forces, and further solved via 2D- isoparametric finite element approximations. The mesh refinement and validation tests are performed to illustrate the stability and accurateness of the present model. In addition, frequency characteristics of the pre-twisted rotating sandwich blades are computed under thermal environment at various sets of parametric conditions such as twist angles, thickness ratios, aspect ratios, layer thickness ratios, volume fractions, rotational velocity and blade curvatures which can be further useful for designing the blade type structures under turbine operating conditions.

Characteristics of a Planar Multijunction Thermal Converter (평면형 다중접합 열전변환기의 특성)

  • Jo, Hyeon-Deok;Kim, Jin-Seop;Lee, Jong-Hyeon;Lee, Jeong-Hui;Park, Se-Il;Gwon, Seong-Won
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.10
    • /
    • pp.699-705
    • /
    • 2001
  • Six types of planar thermal converters from TC 1 to TC 6 were designed and fabricated for the purpose of being used as practical standards to alternating current. The respective voltage responses in air and in a vacuum of TC 6, which has the smallest thermal loss, were about 4.03mV/mW and about 6.38 mV/mW. Thermal time constant of TC 6, which has also the smallest heater thermal inertia, was about 8 ms. The respective variations of AC-DC voltage and current transfer errors from sample to sample, which were measured by FRDC(fast reversed DC) method, were about $\pm$0.41 ~$\pm$0.85 ppm and about $\pm$0.15~$\pm$1.16 ppm in the frequent range of 40 Hz~10 KHz with appling 1 V and 5 mA rms sine waves to the converters. All converters investigated exhibited sufficiently low AC-DC transfer errors to be used as practical standards.

  • PDF

Dynamics of lockstitch sewing process

  • Midha, Vinay Kumar;Mukhopadhyay, A.;Chattopadhyay, R.;Kothari, V.K.
    • The Research Journal of the Costume Culture
    • /
    • v.21 no.6
    • /
    • pp.967-973
    • /
    • 2013
  • During high speed sewing, the needle thread is exposed to dynamic loading, short strike loading, inertia forces, friction, rubbing, force of check spring, bending, pressure, friction, impact, shock and thermal influence. The dynamic thread loading/tension alters throughout the stitch formation cycle and along its passage through the machine. The greatest tensile force occurs at the moment of stitch stretching, when the take up lever pulls for required thread length through the tension regulator. These stresses act on the thread repeatedly and the thread passes 50-80 times through the fabric, the needle eye and the bobbin case mechanism, before getting incorporated into the seam, which result in upto 40% loss in tensile strength of the sewing thread. This damage in the sewing thread adversely affects its processing and functional performance. In this paper, the contribution of dynamic loading, passage through needle and fabric, and bobbin thread interaction in the loss in tensile properties has been studied. It is observed that the loss in tensile properties occurs mainly due to the bobbin thread interaction. Dynamic loading due to the action of take up lever also causes substantial loss in tenacity and breaking elongation of cotton threads.

A Numerical Study on the Heat Transfer Characteristics of Impinging Jet Flow in the Presence of Applied Magnetic Fields (자기장이 인가된 충돌제트의 열전달 특성에 관한 수치적 연구)

  • Lee Hyun Goo;Yoon Hyun Sik;Hong Seung Do;Ha Man Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.6 s.237
    • /
    • pp.653-661
    • /
    • 2005
  • The present study numerically investigates two-dimensional fluid flow and heat transfer ir the confined jet flow in the presence of applied magnetic field. For the purpose of controlling vortex shedding and heat transfer, numerical simulations to calculate the fluid flow and heat transfer in the confined jet are performed for different Reynolds numbers in the absence and presence of magnetic fields and for different Prandtl numbers of 0.02 (liquid metal), 0.7 (air) and 7 (water) in the range of $0{\le}N{\le}0.05$, where N is the Stuart number (interaction parameter) which is the ratio of electromagnetic force to inertia force. The present study reports the detailed information of flow and thermal quantities in the channel at different Stuart numbers. As the intensity of applied magnetic fields increases, the vortex shedding formed in the channel becomes weaker and the oscillating amplitude of impinging jet decreases. The flow and thermal fields become the steady state if the Stuart number is greater than the critical value. Thus the Nusselt number at the stagnation point representing the heat transfer characteristics also vary as a function of Stuart number.

Creep analysis of a rotating functionally graded simple blade: steady state analysis

  • Mirzaei, Manouchehr Mohammad Hosseini;Arefi, Mohammad;Loghman, Abbas
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.463-472
    • /
    • 2019
  • Initial thermo-elastic and steady state creep deformation of a rotating functionally graded simple blade is studied using first-order shear deformation theory. A variable thickness model for cantilever beam has been considered. The blade geometry and loading are defined as functions of length so that one can define his own blade profile and loading using any arbitrary function. The blade is subjected to a transverse distributed load, an inertia body force due to rotation and a distributed temperature field due to a thermal gradient between the tip and the root. All mechanical and thermal properties except Poisson's ratio are assumed to be longitudinally variable based on the volume fraction of reinforcement. The creep behaviour is modelled by Norton's law. Considering creep strains in stress strain relation, Prandtl-Reuss relations, Norton' law and effective stress relation differential equation in term of effective creep strain is established. This differential equation is solved numerically. By effective creep strain, steady state stresses and deflections are obtained. It is concluded that reinforcement particle size and form of distribution of reinforcement has significant effect on the steady state creep behavior of the blade.