• Title/Summary/Keyword: thermal impact

Search Result 824, Processing Time 0.025 seconds

Low-frequency modes in the fluid-structure interaction of a U-tube model for the steam generator in a PWR

  • Zhang, Hao;Chang, Se-Myong;Kang, Soong-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.1008-1016
    • /
    • 2019
  • In the SG (steam generator) of PWR (pressurized water reactor) for a nuclear plant, hundreds of U-shaped tubes are used for the heat exchanger system. They interact with primary pressurized cooling water flow, generating flow-induced vibration in the secondary flow region. A simplified U-tube model is proposed in this study to apply for experiment and its counterpart computation. Using the commercial code, ANSYS-CFX, we first verified the Moody chart, comparing the straight pipe theory with the results derived from CFD (computational fluid dynamics) analysis. Considering the virtual mass of fluid, we computed the major modes with the low natural frequencies through the comparison with impact hammer test, and then investigated the effect of pump flow in the frequency domain using FFT (fast Fourier transform) analysis of the experimental data. Using two-way fluid-structure interaction module in the CFD code, we studied the influence on mean flow rate to generate the displacement data. A feasible CFD method has been setup in this research that could be applied potentially in the field of nuclear thermal-hydraulics.

Evaluation of Static Spring Constant and Accelerated Life Prediction for Compression Set of Polyurethane Resilient Pad in Rail Fastening System

  • Lee, Seung-Won;Park, Jun-Young;Park, Eun-Young;Ryu, Sung-Hwan;Bae, Seok-Hu;Kim, Nam-Il;Yun, Ju-Ho;Yoon, Jeong-Hwan
    • Elastomers and Composites
    • /
    • v.53 no.4
    • /
    • pp.220-225
    • /
    • 2018
  • Resilient pads play a major role in reducing the impact of loads on a rail in a rail-fastening system, which is essentially used for a concrete track. Although a compression set test is commonly used to measure the durability of a resilient pad, the static spring constant is often observed to be different from the fatigue test. In this study, a modified compression set test method was proposed to monitor the variations in the compression set and static spring constant of a resilient pad with respect to temperature and time. In addition, the life of the resilient pad was predicted by performing an acceleration test based on the Arrhenius equation.

A study on exhaust emission characteristics according to operating conditions and butanol blended fuels in a small diesel engine for fishing vessel (소형 어선용 디젤기관의 운전조건과 부탄올 혼합유의 배기 배출물 특성에 관한 연구)

  • KIM, Sang-Am;WANG, Woo-Gyeong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.57 no.3
    • /
    • pp.256-263
    • /
    • 2021
  • In this study, blending oils of diesel oil and butanol were used as fuel oil for diesel engine to measure combustion pressure, fuel consumption, air ratio and exhaust gas emission due to various operating conditions such as engine revolution and torque. Using these data, the results of analyzing the engine performance, combustion characteristics and exhaust emission characteristics such as NOx (nitrogen oxides), CO2 (carbon dioxide), CO (carbon monoxide) and soot were as follows. The fuel conversion efficiency at each load was highest when driven in the engine revolution determined by a fixed pitch propeller law. Except 30% butanol blending oil, fuel conversion efficiency of the other fuel oils increased as the load increased. Compared to diesel oil, using 10% and 20% butanol blending oil as fuel oil was advantageous in terms of thermal efficiency, but it did not have a significant impact on the reduction of exhaust gas emissions. On the other hand, future research is needed on the results of the 20% butanol blending oil showing lower or similar levels of smoke concentration and carbon monoxide emission rate other than those types of diesel oil.

Analysis of several VERA benchmark problems with the photon transport capability of STREAM

  • Mai, Nhan Nguyen Trong;Kim, Kyeongwon;Lemaire, Matthieu;Nguyen, Tung Dong Cao;Lee, Woonghee;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2670-2689
    • /
    • 2022
  • STREAM - a lattice transport calculation code with method of characteristics for the purpose of light water reactor analysis - has been developed by the Computational Reactor Physics and Experiment laboratory (CORE) of the Ulsan National Institute of Science and Technology (UNIST). Recently, efforts have been taken to develop a photon module in STREAM to assess photon heating and the influence of gamma photon transport on power distributions, as only neutron transport was considered in previous STREAM versions. A multi-group photon library is produced for STREAM based on the ENDF/B-VII.1 library with the use of the library-processing code NJOY. The developed photon solver for the computation of 2D and 3D distributions of photon flux and energy deposition is based on the method of characteristics like the neutron solver. The photon library and photon module produced and implemented for STREAM are verified on VERA pin and assembly problems by comparison with the Monte Carlo code MCS - also developed at UNIST. A short analysis of the impact of photon transport during depletion and thermal hydraulics feedback is presented for a 2D core also from the VERA benchmark.

Structural damage detection in presence of temperature variability using 2D CNN integrated with EMD

  • Sharma, Smriti;Sen, Subhamoy
    • Structural Monitoring and Maintenance
    • /
    • v.8 no.4
    • /
    • pp.379-402
    • /
    • 2021
  • Traditional approaches for structural health monitoring (SHM) seldom take ambient uncertainty (temperature, humidity, ambient vibration) into consideration, while their impacts on structural responses are substantial, leading to a possibility of raising false alarms. A few predictors model-based approaches deal with these uncertainties through complex numerical models running online, rendering the SHM approach to be compute-intensive, slow, and sometimes not practical. Also, with model-based approaches, the imperative need for a precise understanding of the structure often poses a problem for not so well understood complex systems. The present study employs a data-based approach coupled with Empirical mode decomposition (EMD) to correlate recorded response time histories under varying temperature conditions to corresponding damage scenarios. EMD decomposes the response signal into a finite set of intrinsic mode functions (IMFs). A two-dimensional Convolutional Neural Network (2DCNN) is further trained to associate these IMFs to the respective damage cases. The use of IMFs in place of raw signals helps to reduce the impact of sensor noise while preserving the essential spatio-temporal information less-sensitive to thermal effects and thereby stands as a better damage-sensitive feature than the raw signal itself. The proposed algorithm is numerically tested on a single span bridge under varying temperature conditions for different damage severities. The dynamic strain is recorded as the response since they are frame-invariant and cheaper to install. The proposed algorithm has been observed to be damage sensitive as well as sufficiently robust against measurement noise.

The influence of L-arginine as an additive on the compressive strength and hydration reaction of Portland cement

  • Yildiz, Mine Kurtay;Gerengi, Husnu;Kocak, Yilmaz
    • Computers and Concrete
    • /
    • v.29 no.4
    • /
    • pp.237-246
    • /
    • 2022
  • The concrete quality relies on general factors like preparation technique, uniformity of the compaction, amount and appropriateness of the additives. The current article investigates the impact of a well knows amino acid, L-arginine as an additive on water requirements, setting durations and characterization of various cement samples. Compressive strength tests of reference and L-arginine added cements at age of 2, 7 and 28 days were carried out according to TS-EN 196-1. Samples were blended by incorporating various amounts of L-arginine (25 ppm, 50 ppm and 75 ppm) in the cement water mixture which were tested with Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermo-gravimetric analysis (TG), scanning electron microscopy (SEM) and the energy-dispersive X-ray spectroscopy (EDS) on the 28th day. Results revealed that L-arginine does not affect the setting time, volume expansion of cement and water demands negatively; rather it imparts enhanced sustainability to the samples. It was determined that the highest value belonged to the 75L mortar with an increase of 2.6% compared to the reference sample when the compressive strengths of all mortars were compared on the 28th day. Besides, it has been observed that the development of calcium silicate hydrate or C-S-H gel, calcium hydroxide or CH and other hydrated products are associated with each other. L-arginine definitely has a contribution in the consumption of CH formed in the hydration process.

Full-scale bridge expansion joint monitoring using a real-time wireless network

  • Pierredens Fils;Shinae Jang;Daisy Ren;Jiachen Wang;Song Han;Ramesh Malla
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.4
    • /
    • pp.359-371
    • /
    • 2022
  • Bridges are critical to the civil engineering infrastructure network as they facilitate movement of people, the transportation of goods and services. Given the aging of bridge infrastructure, federal officials mandate visual inspections biennially to identify necessary repair actions which are time, cost, and labor-intensive. Additionally, the expansion joints of bridges are rarely monitored due to cost. However, expansion joints are critical as they absorb movement from thermal effects, loadings strains, impact, abutment settlement, and vehicle motion movement. Thus, the need to monitor bridge expansion joints efficiently, at a low cost, and wirelessly is desired. This paper addresses bridge joint monitoring needs to develop a cost-effective, real-time wireless system that can be validated in a full-scale bridge structure. To this end, a wireless expansion joint monitoring was developed using commercial-off-the-shelf (COTS) sensors. An in-service bridge was selected as a testbed to validate the performance of the developed system compared with traditional displacement sensor, LVDT, temperature and humidity sensors. The short-term monitoring campaign with the wireless sensor system with the internet protocol version 6 over the time slotted channel hopping mode of IEEE 802.15.4e (6TiSCH) network showed reliable results, providing high potential of the developed system for effective joint monitoring at a low cost.

Development of Model to Evaluate Thermal Fluid Flow Around a Submerged Transportation Cask of Spent Nuclear Fuel in the Deep Sea

  • Guhyeon Jeong;Sungyeon Kim;Sanghoon Lee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.4
    • /
    • pp.411-428
    • /
    • 2022
  • Given the domestic situation, all nuclear power plants are located at the seaside, where interim storage sites are also likely to be located and maritime transportation is considered inevitable. Currently, Korea does not have an independently developed maritime transportation risk assessment code, and no research has been conducted to evaluate the release rate of radioactive waste from a submerged transportation cask in the sea. Therefore, secure technology is necessary to assess the impact of immersion accidents and establish a regulatory framework to assess, mitigate, and prevent maritime transportation accidents causing serious radiological consequences. The flow rate through a gap in a containment boundary should be calculated to determine the accurate release rate of radionuclides. The fluid flow through the micro-scale gap can be evaluated by combining the flow inside and outside the transportation cask. In this study, detailed computational fluid dynamic and simplified models are constructed to evaluate the internal flow in a transportation cask and to capture the flow and heat transfer around the transportation cask in the sea, respectively. In the future, fluid flow through the gap will be evaluated by coupling the models developed in this study.

Controlling Particle Size of Recycled Copper Oxide Powder for Copper Thermite Welding Characteristics (동 테르밋 용접 특성 향상을 위한 폐 산화동 분말 입도 제어 연구)

  • Hansung Lee;Minsu Kim;Byungmin Ahn
    • Journal of Powder Materials
    • /
    • v.30 no.4
    • /
    • pp.332-338
    • /
    • 2023
  • Thermite welding is an exceptional process that does not require additional energy supplies, resulting in welded joints that exhibit mechanical properties and conductivity equivalent to those of the parent materials. The global adoption of thermite welding is growing across various industries. However, in Korea, limited research is being conducted on the core technology of thermite welding. Currently, domestic production of thermite powder in Korea involves recycling copper oxide (CuO). Unfortunately, controlling the particle size of waste CuO poses challenges, leading to the unwanted formation of pores and cracks during thermite welding. In this study, we investigate the influence of powder particle size on thermite welding in the production of Cu-thermite powder using waste CuO. We conduct the ball milling process for 0.5-24 h using recycled CuO. The evolution of the powder shape and size is analyzed using particle size analysis and scanning electron microscopy (SEM). Furthermore, we examine the thermal reaction characteristics through differential scanning calorimetry. Additionally, the microstructures of the welded samples are observed using optical microscopy and SEM to evaluate the impact of powder particle size on weldability. Lastly, hardness measurements are performed to assess the strengths of the welded materials.

Modeling and simulation of VERA core physics benchmark using OpenMC code

  • Abdullah O. Albugami;Abdullah S. Alomari;Abdullah I. Almarshad
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3388-3400
    • /
    • 2023
  • Detailed analysis of the neutron pathway through matter inside the nuclear reactor core is exceedingly needed for safety and economic considerations. Due to the constant development of high-performance computing technologies, neutronics analysis using computer codes became more effective and efficient to perform sophisticated neutronics calculations. In this work, a commercial pressurized water reactor (PWR) presented by Virtual Environment for Reactor Applications (VERA) Core Physics Benchmark are modeled and simulated using a high-fidelity simulation of OpenMC code in terms of criticality and fuel pin power distribution. Various problems have been selected from VERA benchmark ranging from a simple two-dimension (2D) pin cell problem to a complex three dimension (3D) full core problem. The development of the code capabilities for reactor physics methods has been implemented to investigate the accuracy and performance of the OpenMC code against VERA SCALE codes. The results of OpenMC code exhibit excellent agreement with VERA results with maximum Root Mean Square Error (RMSE) values of less than 0.04% and 1.3% for the criticality eigenvalues and pin power distributions, respectively. This demonstrates the successful utilization of the OpenMC code as a simulation tool for a whole core analysis. Further works are undergoing on the accuracy of OpenMC simulations for the impact of different fuel types and burnup levels and the analysis of the transient behavior and coupled thermal hydraulic feedback.