DOI QR코드

DOI QR Code

Controlling Particle Size of Recycled Copper Oxide Powder for Copper Thermite Welding Characteristics

동 테르밋 용접 특성 향상을 위한 폐 산화동 분말 입도 제어 연구

  • Hansung Lee (Department of Energy Systems Research, Ajou University) ;
  • Minsu Kim (Department of Energy Systems Research, Ajou University) ;
  • Byungmin Ahn (Department of Energy Systems Research, Ajou University)
  • 이한성 (아주대학교 에너지시스템학과) ;
  • 김민수 (아주대학교 에너지시스템학과) ;
  • 안병민 (아주대학교 에너지시스템학과)
  • Received : 2023.06.18
  • Accepted : 2023.07.07
  • Published : 2023.08.28

Abstract

Thermite welding is an exceptional process that does not require additional energy supplies, resulting in welded joints that exhibit mechanical properties and conductivity equivalent to those of the parent materials. The global adoption of thermite welding is growing across various industries. However, in Korea, limited research is being conducted on the core technology of thermite welding. Currently, domestic production of thermite powder in Korea involves recycling copper oxide (CuO). Unfortunately, controlling the particle size of waste CuO poses challenges, leading to the unwanted formation of pores and cracks during thermite welding. In this study, we investigate the influence of powder particle size on thermite welding in the production of Cu-thermite powder using waste CuO. We conduct the ball milling process for 0.5-24 h using recycled CuO. The evolution of the powder shape and size is analyzed using particle size analysis and scanning electron microscopy (SEM). Furthermore, we examine the thermal reaction characteristics through differential scanning calorimetry. Additionally, the microstructures of the welded samples are observed using optical microscopy and SEM to evaluate the impact of powder particle size on weldability. Lastly, hardness measurements are performed to assess the strengths of the welded materials.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2021R1A2C1005478).

References

  1. Y. Lim: J. Powder Mater., 26 (2019) 220.
  2. T. Wu, F. Sevely, S. Pelloquin, S. A. Souleille, A. Esteve and C. Rossi: Combust. Flame, 233 (2021) 111598.
  3. S. Knapp, S. Kelzenberg, A. Raab, E. Roth and V. Weiser: Propellants Explos. Pyrotech., 44 (2019) 9.
  4. K. J. Blobaum, M. E. Reiss, J. M. Plizko and T. P. Weihs: J. Appl. Phys., 94 (2003) 2915.
  5. H. Wang, D. J. Kline, P. Biswas and M. R. Zachariah: Combust. Flame, 231 (2021) 111492.
  6. K. Ozakgul, F. Piroglu and O. Caglayan: Eng. Fail. Anal., 57 (2015) 21.
  7. S. Choi, S. Park and E. R. Back: J. Weld. Join., 30 (2012) 434.
  8. A. Sharma, H. Lee and B. Ahn: J. Mater. Sci., 57 (2022) 17957.
  9. H. Lee, A. Sharma and B. Ahn: J. Mater. Sci., 57 (2022) 18089.
  10. A. Sharma, H. Lee and B. Ahn: Powder Metall., 64 (2021) 192.
  11. W. An, Z. Dou, J. Han and T. Zhang: J. Mater. Res. Technol., 24 (2023) 6533.
  12. F. Sevely, X. Liu, T. Wu, F. Mesnilgraente, B. Franc, S. A. Souleille, X. Dollat and C. Rossi: ACS Appl. Polym. Mater., 3 (2021) 3972. https://doi.org/10.1021/acsapm.1c00513
  13. E. C. Abdullah and D. Geldart: Powder Technol., 102 (1999) 151.
  14. J. Song, J. Han, S.-Y. Kim, J. Seok and H. Kim: J. Powder Mater., 29 (2022) 34.
  15. Y. A. Alshataif, S. Sivasankaran, F. A. A. Mufadi, A. S. Alaboodi and H. R. Ammar: Met. Mater. Int., 26 (2020) 1099.
  16. H. X. Khoa, S. Bae, B. Kim and J. S. Kim: J. Powder Mater., 21 (2014) 155.
  17. H. Lee, A. Sharma and B. Ahn: J. Alloy Compd., 947 (2023) 169545.
  18. S. Narayan and L. Anand: J. Mech. Phys. Solids, 129 (2019) 119.
  19. H. Jia, X. Li, J. Song, X. Zhang, L. Luo, Y. He, B. Li, Y. Cai, S. Hu, X. Xiaom, C. Wang, K. M. Rosso, R. Yi, R. Patel and J. G. Zhang: Nat. Commun., 11 (2022) 1474.
  20. X. Rong, X. Chen, D. Zhao, X. Zhang, C. He, C. Shi and N. Zhao: Composites, Part A, 173 (2023) 107630.
  21. X. Zhang, S. Pfeiffer, P. Rutkowski, M. Makowska, D. Kata, J. Yang and T. Graule: Appl. Surf. Sci., 520 (2020) 146304.
  22. L. Shen, Y. Li, L. Zhang, S. Zhu, Z. Yi and C. Zhu: J. Chem. Eng., 466 (2023) 143113.
  23. J. Wang, H. Li, C. Hu, Z. Wang, K. Han, D. Liu, J. Wang and Q. Zhu: Metals, 13 (2023) 831.
  24. S. Siva, S. Sampathkumar and J. Sudha: J Mater. Eng. Perform., 28 (2019) 2256.
  25. W. Xi, H. Wang, J. Li and C. Shi: Mater. Sci. Eng. A, 541 (2012) 166.
  26. B. B. Rath, M. A. Imam and C. S. Pande: Mater. Phys. Mech., 1 (2000) 61.
  27. A. Kauffmann, J. Freudenberger, D. Geissler, S. Yin, W. Schillinger, V. S. Sarma, H. Bahmanpour, R. Scattergood, M. S. Khoshkhoo, H. Wendrock, C. C. Koch, J. Eckert and L. Schultz: Acta Mater., 59 (2011) 7816.
  28. H. Park, S.-H. Kim, W.-J. Lee, J.-W. Ha, S.-J. Kim and H.-Y. Lee: Met. Mater. Int., 27 (2021) 2220. https://doi.org/10.1007/s12540-020-00682-0