• Title/Summary/Keyword: thermal environment

Search Result 2,979, Processing Time 0.034 seconds

A study on urban heat islands over the metropolitan Seoul area, using satellite images (원격탐사기법에 의한 도시열섬 연구)

  • ;Lee, Hyoun-Young
    • Journal of the Korean Geographical Society
    • /
    • v.40
    • /
    • pp.1-13
    • /
    • 1989
  • The brightness temperature from NOAA AVHRR CH 4 images was examined for the metropolitan Seoul area, the capital city of Korea, to detect the characteristics of the urban heat island for this study. Surface data from 21 meteorological stations were compared with the brightness temperatures Through computer enhancement techniques, more than 20 heat islands could be recognized in South Korea, with 1 km spatii resolution at a scale of 1: 200, 00O(Fig. 3, 4 and 6). The result of the analysis of AVHRR CH 4 images over the metropolitan Seoul area can be summerized as follows (1) The pattern of brightness temperature distribution in the metropolitan Seoul area shows a relatively strong temperature contrast between urban and rural areas. There is some indication of the warm brightness temperature zone characterrizing built-up area including CBD, densely populated residential district and industrial zone. The cool brightness temperature is asociaed with the major hills such as Bukhan-san, Nam-san and Kwanak-san or with the major water bodies such as Han-gang, and reservoirs. Although the influence of the river and reservoirs is obvious in the brightness temperauture, that of small-scaled land use features such as parks in the cities is not features such as parks in the cities is not apperent. (2) One can find a linerar relationshop between the brightenss temperature and air temperature for 10 major cities, where the difference between two variables is larger in big cities. Though the coefficient value is 0.82, one can estimate that factors of the heat islands can not be explained only by the size of the cities. The magnitude of the horizontal brightness temperature differences between urban and rural area is found to be greater than that of horizontal air temperature difference in Korea. (3) Also one can find the high heat island intensity in some smaller cities such as Changwon(won(Tu-r=9.0$^{\circ}$C) and Po-hang(Tu-r==7.1$^{\circ}$~)T. he industrial location quotient of Chang-won is the second in the country and Po-hang the third. (4) A comparision of the enhanced thermal infrared imageries in 1986 and 1989, with the map at a scale of 1:200, 000 for the meotropolitan Seoul area showes the extent of possible urbanization changes. In the last three years, the heat islands have been extended in area. zone characterrizing built-up area including (5) Although the overall data base is small, the data in Fig. 3 suggest that brightness tempeautre could ge utilized for the study on the heat island characteristics. Satellite observations are required to study and monitor the impact of urban heat island on the climate and environment on global scale. This type of remote sensing provides a meams of monitoring the growth of urban and suburban aeas and its impact on the environment.

  • PDF

Temperature-dependent Development Model of the Striped Fruit Fly, Bactrocera scutellata (Hendel)(Diptera: Tephritidae) (호박꽃과실파리 온도 발육모형)

  • Jeon, Sung-Wook;Cho, Myoung-Rae;Kim, Yang-Pyo;Lee, Sang-Guei;Kim, So-Hyung;Yu, Jin;Lee, Jong-Jin;Hwang, Chang-Yeon
    • Korean journal of applied entomology
    • /
    • v.50 no.4
    • /
    • pp.373-378
    • /
    • 2011
  • The striped fruit fly, Bactrocera scutellata, damages pumpkin and other cucurbitaceous plants. The developmental period of each stage was measured at seven constant temperatures (15, 18, 21, 24, 27, 30, and $33{\pm}1.0^{\circ}C$). The developmental time of eggs ranged from 4.2 days at $15^{\circ}C$ to 0.9 days at $33^{\circ}C$. The developmental period of larvae was 4.2 days at $15^{\circ}C$, and slowed in temperatures above $27^{\circ}C$. The developmental period of pupa was 21.5 days at $15^{\circ}C$ and 7.6 days at $33^{\circ}C$. The mortality of eggs was 17.1% at $15^{\circ}C$ and 22.9% at $33^{\circ}C$, Larval mortalities (1st, 2nd, 3rd) were 24.1, 27.3 and 18.2%, respectively, at $15^{\circ}C$, Pupal mortalities were 18.2% at $15^{\circ}C$ and 23.1% at $33^{\circ}C$. The relationship between developmental rate and temperature fit both a linear model and a nonlinear model. The lower threshold temperatures of eggs, larvae, and pupae were 12.5, 10.7, and $6.3^{\circ}C$, respectively, and threshold temperature of the total immature period was $8.5^{\circ}C$. The thermal constants required to complete the egg, larval, and pupal stages were 33.2, 118.3, and 181.2 DD, respectively. The distribution of each development stages was described by a 3-parameter Weibull function.

Physiological Responses of Wearing Safety Helmet with Cooling Pack in Hot Environment (머리 냉각시의 인체생리반응 - 안전모 착용을 중심으로 -)

  • Choi, Jeong-Wha;Park, Joon-Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.6 s.165
    • /
    • pp.955-965
    • /
    • 2007
  • Safety helmets are used widely in various industries by workers since they are legally required to wear them. However, thermal discomfort is one of the major complaints from helmet users. To relieve this problem, frozen gelled packs can be considered for use inside the helmets. In this paper, tests were performed on humans to evaluate the physiological strains of wearing safety helmets and to investigate the effects of using frozen gelled packs inside the helmets. Experiments were conducted in a climatic chamber of WBGT $33{\pm}1^{\circ}C$ under four differed experimental conditions: 1) not wearing a safety helmet(NH); 2) wearing a safety helmet with frozen gelled pack A(HA); 3) wearing a safety helmet with frozen gelled pack B(HB); and 4) wearing only a safety helmet(OH). The results were as follows. First, when comparing NH with OH, physiological responses such as $\bar{T}_{sk},\;T_r$, HR and sweat rate were significantly higher in OH and subjective sensations were reported as less hot and more comfortable than NH(p<.05). Second, in regard to the frozen gelled packs inserted inside the safety helmets, some physiological responses in HA were different from those in HB, according to the two different types of packs. HA was hotter, more uncomfortable and less exhausted than HB. However, result from both HA and HB were lower than those from OH in terms of temperature and humidity inside safety helmet, sweat rate, $T_r$ increase, heat storage(p<.05). When wearing safety helmets with frozen gelled packs, it was shown that heat strain can be alleviated. These results are expected to help millions of workers who complain that wearing safety helmets is uncomfortable and messy.

Development of Carbon Dioxide Emission Factor from Resource Recovery Facility (폐기물자원회수시설의 이산화탄소 배출계수 개발)

  • Kim, Seungjin;Im, Gikyo;Yi, Chi-Yeong;Lee, Seehyung;Sa, Jae-Hwan;Jeon, Eui-Chan
    • Journal of Climate Change Research
    • /
    • v.4 no.1
    • /
    • pp.51-61
    • /
    • 2013
  • To address the problems associated with climate change and energy shortage, Korea has been making efforts to turn waste materials into usable energy. Due to the ongoing efforts to convert waste materials into energy, waste incineration is expanding to utilize the heat generated, and the subsequent greenhouse gas emissions from these waste material incineration are expected to increase. In this study, a municipal waste incineration plant that generates heat and electricity through heat recovery was selected as a subject facility. Methods for estimating the greenhouse gas emissions in the municipal waste incineration plant that was selected as a subject plant were sought, and the greenhouse gas emissions and emission factor were estimated. The $CO_2$ concentrations in discharge gas from the subject facility were on average 6.99%, and the result from calculating this into greenhouse gas emissions showed that the total amount of emissions was $254.60ton\;CO_2/day$. The net emissions, excluding the amount of greenhouse gas emitted from biomass incineration, was shown to be $110.59ton\;CO_2/day$. In addition, after estimating the emissions by separating the heat and electricity generated in the incineration facility, greenhouse gas emission factors were calculated using the greenhouse gas emissions produced per each unit of output. The estimated emission factor for heat was found to be $0.047ton\;CO_2/GJ$ and the emission factor for electricity was found to be $0.652ton\;CO_2/MWh$. The estimated emission factor was shown to be about 17% lower than the $0.783ton\;CO_2/MWh$ emission factor for thermal power plants that use fossil fuels. Waste material types and fossil carbon contents were evaluated as being the factors that have major effects on the greenhouse gas emissions and emission factor.

Characteristics of Cooling Effect Depending on Operation of Forced Ventilation Systems in a Single-span Plastic Greenhouse (강제환기장치 사용에 따른 단동 플라스틱 온실 기온 강하 특성)

  • Kim, Seong-Heon;Kim, Hyung-Kweon;Kwon, Jin-Kyung;Lee, Si-Young
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.143-151
    • /
    • 2022
  • This study was carried out to investigate quantitative characteristics of the cooling effect in a single-span arch greenhouse with roll-up side vents depending on operation of circulation and exhaust fans during ventilation, in order to suggest a practical strategy regarding installation or operation of forced ventilation systems. The examination was conducted under 3 different ventilation conditions (side vents only, side vents + circulation fans, and side vents + circulation fans + exhaust fans). In each condition, variations of internal and external air temperatures and exogenous environmental factors were recorded during ventilation, and the cooling effects were investigated by comparing the normalized temperature difference (NTD) of each ventilation condition. In the morning time (11:00-12:00), a temporary peak in the temperature difference was observed at the beginning of ventilation regardless of ventilation methods. The time taken to the maximum NTD was decreased from 340 s to 110s, and the NTD was dropped from 1.158 to 1.037 as the more forced ventilation systems were operated. The more operations caused the passing time over specific NTD values reduced by 60% as the time was reduced from 1,030 s to 550 s at NTD = 0.8, 1,610 s to 915 s at NTD = 0.6, and 2,315 s to 1,360 s at NTD = 0.4. The temporary peak in NTD was not observed in the afternoon time (14:00-15:00) but it was dropped as quickly as the ventilation started. Also the more operations resulted in the passing time over specific NTD values reduced by 70% as the time was reduced from 560 s to 345 s at NTD = 0.8, from 825 s to 540 s at NTD = 0.6, and from 1,145 s to 810 s at NTD = 0.4. Conclusively, the intervention of the forced ventilation system is recommended in the morning time or in high thermal conditions to achieve more effective and economical ventilation.

Characteristics of Astronomical Tide and Sea Level Fluctuations in Kiribati and Neighboring Countries (키리바시와 주변국 천문조위 특성 및 해수면 변동)

  • Kim, Yangoh;Kim, Jongkyu;Kim, Hyeon-Ju
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.5
    • /
    • pp.746-752
    • /
    • 2022
  • Kiribati, a South Pacific island, and its surrounding countries are gradually submerging to rising sea levels. The sea level continues to change according to the degree of thermal expansion of glaciers and seawater that decreases with increase in temperature. Global warming affects both the amount and volume of seawater, thus increasing sea level. Tidal phenomena occur twice a day to the attraction of celestial bodies such as the moon and the sun. The moon changes the angle of orbiting surface with the Earth equator every 18.6 years, and the magnitude of the tidal force changes depending on the distance between the Earth equator and the moon orbital surface. The University of Hawaii Sea Level Center selected Tarawa, Christmas, Kanton of Kiribati,, Lautoka, Suva of Fiji,Funafuti of Tuvalu, Nuk1u'alofa of Tonga, and Port Vila of Vanuatu. When comparing tide levels for each year for 19 years, the focus was on checking the change in sleep to Tide levels, and rising sea levels was the effect of Tide levels. The highest astronomical tides (HAT) and lowest astronomical tides (LAT) were identified as Tarawa 297.0, 50.8 cm, Christmas 123.8, 19.9 cm, Kanton 173.7, 39.9 cm, Lautoka 240.7, 11.3 cm, Funafuti 328.6, 98.4 cm, Nuk1u'alofa 188.8, 15.5 cm, Port Vila 161.5, -0.5cm, respectively. The Sea level rising speed was Tarawa 3.1 mm/year, Christmas -1.0 mm/year, Kanton 1.6 mm/year, Lautoka 3.1 mm/year, Suva 7.4 mm/year, Funafuti 1.4 mm/year, Nuk1u'alofa 4.2 mm/year, and Port Vila -1.2 mm/year, respectively

Hydrochemistry and Noble Gas Origin of Various Hot Spring Waters from the Eastern area in South Korea (동해안지역 온천유형별 수리화학적 특성 및 영족기체 기원)

  • Jeong, Chan-Ho;Nagao, Keisuke;Kim, Kyu-Han;Choi, Hun-Kong;Sumino, Hirochika;Park, Ji-Sun;Park, Chung-Hwa;Lee, Jong-Ig;Hur, Soon-Do
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.1
    • /
    • pp.1-12
    • /
    • 2008
  • The purpose of this study is to characterize the hydrogeochemical characteristics of hot spring waters and to interpret the source of noble gases and the geochemical environment of the hot spring waters distributed along the eastern area of the Korean peninsula. For this purpose, We carried out the chemical, stable isotopic and noble gas isotopic analyses for eleven hot spring water and fourteen hot spring gas samples collected from six hot spring sites. The hot spring waters except the Osaek hot spring water show the pH range of 7.0 to 9.1. However, the Osaek $CO_2$-rich hot spring water shows a weak acid of pH 5.7. The temperature of hot spring waters in the study area ranges from $25.7^{\circ}C$ to $68.3^{\circ}C$. Electrical conductivity of hot spring waters varies widely from 202 to $7,130{\mu}S/cm$. High electrical conductivity (av., $3,890{\mu}S/sm$) by high Na and Cl contents of the Haeundae and the Dongrae hot spring waters indicates that the hot spring waters were mixed with seawater in the subsurface thermal system. The type of hot springs in the viewpoint of dissolved components can be grouped into three types: (1) alkaline Na-$HCO_3$ type including sulfur gas of the Osaek, Baekam, Dukgu and Chuksan hot springs, and (2) saline Na-Cl type of the Haeundae and Dongrae hot springs, and (3) weak acid $CO_2$-rich Na-$HCO_3$ type of Osaek hot spring. Tritium ratios of the Haeundae and the Dongrae hot springs indicate different residence time in their aquifers of older water of $0.0{\sim}0.3$ TU and younger water of $5.9{\sim}8.8$ TU. The ${\delta}^{18}O$ and ${\delta}D$ values of hot spring waters indicate that they originate from the meteoric water, and that the values also reflect a latitude effect according to their locations. $^3He/^4He$ ratios of the hot spring waters except Osaek $CO_2$-rich hot spring water range from $0.1{\times}10^{-6}$ to $1.1{\times}10^{-6}$ which are plotted above the mixing line between air and crustal components. It means that the He gas in hot spring waters was originated mainly from atmosphere and crust sources, and partly from mantle sources. The Osaek $CO_2$-rich hot spring water shows $3.3{\times}10^{-6}$ in $^3He/^4He$ ratio that is 2.4 times higher than those of atmosphere. It provides clearly a helium source from the deep mantle. $^{40}Ar/^{36}Ar$ ratios of hot spring water are in the range of an atmosphere source.

A Study on the optimum drying condition of sewage sludge cake using continuous microwave full scale dryer (연속적 마이크로파 Full Scale 건조장치를 이용한 하수슬러지 케익의 최적 건조조건 연구)

  • Ha, Sang-An;Jung, Wang-Seok
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.2
    • /
    • pp.47-56
    • /
    • 2008
  • The objective of this research is to evaluate the optimum recycling methods for the sewage sludge cakes at different microwave power-settings and for different periods of time. The dehydrated sewage sludge cakes used in this study was obtained from N wastewater treatment plan in the P City. The beginning drying processes were carried out in a microwave oven with 2,450 MHz frequency and power ranges of 1kW to 4 kW. The continuous conveyer drying system was also operated with 2,450 MHz frequency and power setting, ranging from of 1 kW to 6 kW. Initial moisture content of the sewage cake is 78~80%, and the moisture content decreased rapidly up to 0.2~2(wt%) within short periods due to breaking the cell walls. This study is also conducted to evaluate the characteristics of sewage sludge cakes with respect to important physical parameters effect on the thermal kinetics for evaporation water in the sludge which are operation times, moisture contents, drying rates, input amounts, flow rates and calorific values. It takes 60 minutes and 120 minutes to reach the critical moisture contents with power setting of 4 kW for 3kg/min and 6kg/min of the flow rates respectively. It takes 120 minutes and 110 minutes to reach the critical moisture contents with flow rates of 2.5 cm/min and sludge input of 6kg/min for the power settings of 4 kW and 6 kW respectively. The most effective value of the power for drying the sludge is 4 kW. Operation with 6kg/min and 4kW on 2cm of the sludge thickness can be effectively and inexpensively to reach the critical moisture contents, when you compare 2cm of the sludge thickness with 1cm and 3cm of the sludge thickness.

  • PDF

Estimation of Urban Heat Island Potential Based on Land Cover Type in Busan Using Landsat-7 ETM+ and AWS Data (Landsat-7 ETM+ 영상과 AWS 자료를 이용한 부산의 토지피복에 따른 여름철 도시열섬포텐셜 산출)

  • Ahn, Ji-Suk;Hwang, Jae-Dong;Park, Myung-Hee;Suh, Young-Sang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.4
    • /
    • pp.65-77
    • /
    • 2012
  • This study examined changes in land cover for the past 25 years in Busan and subsequently evaluated heat island potential by using land surface temperature and observation temperature data. The results were as below. The urban area of Busan increased by more than 2.5 times for the past 25 years from 1975 to 2000. It was believed that an increase in the pavement area of city within such a short period of time was an unprecedented phenomenon unique to our country. It could be assumed that urban heat island would be worsened through this process. After analyzing the land temperature according to the land cover, it was shown that there were noticeable changes in the temperature of urban & built-up and mountain & forest areas. In particular, the temperature rose to $36{\sim}39^{\circ}C$ in industrial areas during the summer, whereas it went down to $22{\sim}24^{\circ}C$ in the urban areas at whose center there were mountains. It was found that heat island potential according to the level of land cover had various values depending on the conditions of land cover. Among the areas of urbanization, the industrial area's heat island potential is 6 to $8^{\circ}C$, and the residential and commercial area's is $0{\sim}5^{\circ}C$, so it has been found that there is high possibility to induce urban heat islands. Meanwhile, in the forest or agricultural area or the waterside, the heat island potential is $-6{\sim}-3^{\circ}C$. With this study result, it is possible to evaluate the effects of temperature increase according to the urban land use, and it can be used as foundational data to improve urban thermal environment and plan eco-friendly urban development.

Study on Basic Requirements of Geoscientific Area for the Deep Geological Repository of Spent Nuclear Fuel in Korea (사용후핵연료 심지층처분장부지 지질환경 기본요건 검토)

  • Bae, Dae-Seok;Koh, Yong-Kwon;Park, Ju-Wan;Park, Jin-Baek;Song, Jong-Soon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.1
    • /
    • pp.63-75
    • /
    • 2012
  • This paper gives some basic requirements and preferences of various geological environmental conditions for the final deep geological repository of spent nuclear fuel (SNF). This study also indicates how the requirements and preferences are to be considered prior to the selection of sites for a site investigation as well as the final disposal in Korea. The results of the study are based on the knowledge and experience from the IAEA and NEA/OECD as well as the advanced countries in SNF disposal project. This study discusses and suggests preliminary guideline of the disposal requirements including geological, mechanical, thermal, hydrogeological, chemical and transport properties of host rock with long term geological stabilities which influence the functions of a multi-barrier disposal system. To apply and determine whether requirements and preferences for a given parameter are satisfied at different stages during a site selection and suitability assessment of a final disposal site, the quantitative criteria in each area should be formulated with credibility through relevant research and development efforts for the deep geological environment during the site screening and selection processes as well as specific studies such as productions of safety cases and validation studies using a generic underground research laboratory (URL) in Korea.