• Title/Summary/Keyword: thermal degradation rate

Search Result 179, Processing Time 0.02 seconds

The Characteristics of Holocellulose Aerogel (홀로셀룰로오스 에어로겔의 특성)

  • Kwon, Gu-Joong;Kim, Dae-Young;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.205-212
    • /
    • 2010
  • This study was carried out to investigate the characterization of aerogel made by holocellulose, the thermal properties of the aerogel, and its shapes and porous structures. The aerogel was made by holocellulose through the gelation in alkali hydroxide-urea solution and freeze drying processes. Holocellulose aerogel had porous structure such as net or sponge. The density of holocellulose aerogel was 0.04 g/$cm^3$, and the specific surface area 145.3 $m^2$/g. Although thermal degradation occurred in the range of $210{\sim}350^{\circ}C$, significant thermal degradation occurred at low temperature with low heating rate, Micropore volume was sharply increased with low heating rate. Holocellulose aerogel char obtained by carbonization with $900^{\circ}C$ and $0.5^{\circ}C$/min. heating rate had the highest surface area, 656.7 $m^2$/g. The deformed and irregular structures of holocellulose aerogel chars due to the thermal degradation were observed in SEM.

Liquid-phase Thermal Degradation Properties of Waste Plastic Film (폐플라스틱 필름의 액상 열분해 특성에 관한 연구)

  • Hwang, T.S.;Kim, Y.S.;Kang, T.W.;Hwang, E.H.
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2003.10a
    • /
    • pp.116-121
    • /
    • 2003
  • In this study, the thermal degradation process has been investigated at various reaction temperature$(350{\sim}400^{\circ}C)$ and times$(30{\sim}120\;min)$ in order to recycle waste plastic films as solid state wax. Waste plastic films were easily melted by adding a small amount of waxes. The effects of wax addition and nitrogen flow rate on their thermal degradation properties were investigated. FT-IR, GPC and viscometer were used to analyze properties of the solid wax including the structure, molicular weight distribution and melt viscosity. The average molecular weight of solid wax was decreased with increasing the reaction time, temperature and amount of wax added, Also, the viscosity of solid wax decreased with increasing the stirring speed at a constant reaction temperature and time, and its viscosity got close to zero above $390^{\circ}C$.

  • PDF

Cure and Thermal Degradation Kinetics of Epoxy/Organoclay Nanocomposite

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.4
    • /
    • pp.204-207
    • /
    • 2012
  • Epoxy nanocomposite was synthesized through the exfoliation of organoclay in an epoxy matrix, which was composed of diglycidyl ether of bisphenol A (DGEBA), 4,4'-methylene dianiline (MDA) and malononitrile (MN). Organoclay was prepared by treating the montmorillonite with octadecyl trimethyl ammonium bromide (ODTMA). The exfoliation of the organoclay was estimated by wide angle X-ray diffraction (WAXD) analysis. In order to measure the cure rate of DGEBA/MDA (30 phr)/MN (5 phr)/organoclay (3 phr), differential scanning calorimetry (DSC) analysis was performed at various heating rates, and the data were interpreted by Kissinger equation. Thermal degradation kinetics of the epoxy nanocomposite were studied by thermogravimetric analysis (TGA), and the data were introduced to the Ozawa equation. The activation energy for cure reaction was 45.8 kJ/mol, and the activation energy for thermal degradation was 143 kJ/mol.

Recovery of Available Resource from Waste Polymer using Thermal Degradation Process (고분자 폐가물의 열분해공정에서 유효자원의 회수)

  • 김형진;정수경;홍인권
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.4
    • /
    • pp.98-104
    • /
    • 2000
  • Commercial rubber(IR, NR, BR), SBR, and tire were degraded by thermal degradation process. The oil yield of rubbers and tire ranges about 37~86%, it was increased with increase of operation temperature in pyrolysis. And the yield of pyrolytic oil was increased with increase of heating rate. The maximum oil yields of IR, NR, BR, SBR, and tire were 80, 73, 83, 86 and 55% each at $700^{\circ}C$ with a heating rate of $20^{\circ}C$/min, respectively. The pyrolytic oil components were consisted of about 50 aromatic compounds. The calorific value of purolytic oil of commercial rubber, SBR, and tire was measured by calorimeter, it was 39~40 kJ/g. The BET surface area of pyroblack was $47~63m^2/g$. The optimum condition of pyrolysis was operating temperature of $700^{\circ}C$ with heating rate of $20^{\circ}C$. Therefore, the pyrolytic oil and pyroblack are possible to alternative fuel and carbon black.

  • PDF

The Evaluation of the thermal degradation and the degree of cure of glass/epoxy composite by ultrasonic technique (복합재료의 열화도 및 경화도에 따른 초음파 특성 연구)

  • 강길호;최원종;박상윤
    • Composites Research
    • /
    • v.16 no.6
    • /
    • pp.33-40
    • /
    • 2003
  • The initial thermal degradation of polymer matrix composite is not observed easily. At the beginning of thermal degradation of polymer matrix composites, phase transformation such as chain scission, oxidation occur, and then micro delamination is produced in matrix and interface between matrix and fiber before blistering. Initial heat damage deteriorate mechanical properties of composites. We presented the detection method of the initial heat damage of composites conveniently using ultrasonic technique. Absorption coefficient and material velocity was measured with thermal degradation and degree of cure. The more thermal degradation was progressed, the more absorption coefficient was increased. When the cure temperature is more high, the absorption coefficient of cured composite is increased and material velocity is decreased. We concluded that cure temperature is more high, the defects such as void is increased and molecular structure cured at high temperature has cross-linking structure which is more absorb the ultrasonic waves.

Thermal Degradation Behavior of Biomass Depending on Torrefaction Temperatures and Heating Rates (반탄화 온도와 승온속도에 의한 바이오매스 열분해 거동)

  • Gong, Sung-Ho;Ahn, Byoung-Jun;Lee, Soo-Min;Lee, Jae-Jung;Lee, Young-Kyu;Lee, Jae-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.685-694
    • /
    • 2016
  • In this study, the thermal degradation behavior of biomass during torrefaction was studied by thermogravimetric and byproduct gas analysis. Torrefaction temperature, time, and heating rate were $220{\sim}300^{\circ}C$, 110 min, and $10{\sim}30^{\circ}C/min$, respectively. The degradation rate of yellow poplar was 8.01~8.81% at $220^{\circ}C$ and 71.86~77.38% at $300^{\circ}C$ depending on heating rate. The degradation rate significantly increased at temperature over $240^{\circ}C$. On the other hand, degradation rate of larch was relatively low as 49.58~54.15% at $300^{\circ}C$. The activation energy of yellow poplar was 87.32~91.24 kJ/mol; these values did not significantly change with heating rate. The activation energy of larch was 83.85~91.60 kJ/mol. The major components of the gas generated during torrefaction were derived from hemicellulose. The component types and concentrations increased with torrefaction severity. High concentrations of furfural and acetic acid were detected during torrefaction of yellow poplar.

A 1D model considering the combined effect of strain-rate and temperature for soft soil

  • Zhu, Qi-Yin;Jin, Yin-Fu;Shang, Xiang-Yu;Chen, Tuo
    • Geomechanics and Engineering
    • /
    • v.18 no.2
    • /
    • pp.133-140
    • /
    • 2019
  • Strain-rate and temperature have significant effects on the one-dimensional (1D) compression behavior of soils. This paper focuses on the bonding degradation effect of soil structure on the time and temperature dependent behavior of soft structured clay. The strain-rate and temperature dependency of preconsolidation pressure are investigated in double logarithm plane and a thermal viscoplastic model considering the combined effect of strain-rate and temperature is developed to describe the mechanical behavior of unstructured clay. By incorporating the bonding degradation, the model is extended that can be suitable for structured clay. The extended model is used to simulate CRS (Constant Rate of Strain) tests conducted on structural Berthierville clay with different strain-rates and temperatures. The comparisons between predicted and experimental results show that the extended model can reasonably describe the effect of bonding degradation on the stain-rate and temperature dependent behavior of soft structural clay under 1D condition. Although the model is proposed for 1D analysis, it can be a good base for developing a more general 3D model.

Evaluation of Thermal Property and Fluidity with Underfill for BGA Package (BGA 패키지를 위한 언더필의 열적 특성과 유동성에 관한 연구)

  • Noh, Bo-In;Lee, Bo-Young;Kim, Soo-Jung;Jung, Seung-Boo
    • Journal of Welding and Joining
    • /
    • v.24 no.2
    • /
    • pp.57-63
    • /
    • 2006
  • In this study, the curing kinetics and thermal degradation of underfill were investigated using differential scanning calorimetry (DSC) and thermo gravimetry analysis (TGA). The mechanical and thermal properties of underfill were characterized using dynamic mechanical analysis (DMA) and thermo-mechanical analysis (TMA). Also, we presented on underfill dispensing process using Prostar tool. The non-isothermal DSC scans at various heating rates, the exothermic reaction peak became narrower with increasing the heating rate. The thermal degradation of underfill was composed of two processes, which involved chemical reactions between the degrading polymer and oxygen from the air atmosphere. The results of fluidity phenomena were simulated using Star CD program, the fluidity of the underfills with lower viscosity was faster.

Analysis of Alizarin Dye in Accelerated Degradation Conditions

  • Ahn, Cheunsoon
    • The International Journal of Costume Culture
    • /
    • v.7 no.1
    • /
    • pp.40-47
    • /
    • 2004
  • The purpose of this research was to examine the degradation rate of alizarin in accelerated degradation conditions using the GC-MS quantitative analysis. Alizarin dye solution (2.5 x 10/sup -3/ M conc.) were kept in 150℃ oven for total of 7 days and the degradation rate was examined each day. 2.5 × 10/sup -4/M conc. alizarin dye solution was mixed with H₂O₂ according to [H₂O₂]/[dye] ratio 40 and were kept under 365㎚ UV for 2 hours, analyzed after 0, 30, 60, 90, 120min using the GC-MS. Gas chromatogram showed alizarin peak at 9.96 - 10.13 min. retention time range and residual peaks in the wide range from 9.6 to 11.1 min. Oven degradation exhibited an initial decrease in the amount of alizarin, which was followed by increasing amount in 4/sup th/ day. The decrease in the alizarin was significantly shown by the 7/sup th/ day. Same pattern was also observed in the H₂O₂/UV/O₂ degradation samples and was verified ed by the UV-VIS spectra. The differences in the amount of alizarin between 1/sup st/ day and 4/sup th/ day samples, 4/sup th/ day and 7/sup th/ day samples, and Control and 7/sup th/ day samples of the oven degradation were significant at alpha .20.

  • PDF

Preparation and characterization of boron-nitrogen coordination phenol resin/SiO2 nanocomposites

  • Gao, J.G.;Zhai, D.;Wu, W.H.
    • Advances in materials Research
    • /
    • v.3 no.1
    • /
    • pp.259-269
    • /
    • 2014
  • The boron-nitrogen-containing phenol-formaldehyde resin (BNPFR)/$SiO_2$ nanocomposites (BNPFR/$SiO_2$) were synthesized in-situ, and structure of BNPFR/$SiO_2$ nanocomposites was characterized by FTIR, XRD and TEM. The loss modulus peak temperature $T_p$ of BNPFR/$SiO_2$ nanocomposites cured with different nano-$SiO_2$ content are determined by torsional braid analysis (TBA). The thermal degradation kinetics was investigated by thermogravimetric analysis (TGA). The results show that nano-$SiO_2$ particulate with about 50 nm diameter has a more uniformly distribution in the samples. The loss modulus peak temperature $T_p$ of BNPFR/$SiO_2$ nanocomposite is $214^{\circ}C$ when nano-$SiO_2$ content is 6 wt%. The start thermal degradation temperature $T_{di}$ is higher about $30^{\circ}C$ than pure BNPFR. The residual rate (%) of nanocomposites at $800^{\circ}C$ is above 40 % when nano-$SiO_2$ content is 9 %. The thermal degradation process is multistage decomposition and following first order.