DOI QR코드

DOI QR Code

Thermal Degradation Behavior of Biomass Depending on Torrefaction Temperatures and Heating Rates

반탄화 온도와 승온속도에 의한 바이오매스 열분해 거동

  • Gong, Sung-Ho (Department of Forest Products and Technology, Chonnam National University) ;
  • Ahn, Byoung-Jun (Division of Wood Chemistry & Microbiology, Department of Forest Products, National Institute of Forest Science) ;
  • Lee, Soo-Min (Division of Wood Chemistry & Microbiology, Department of Forest Products, National Institute of Forest Science) ;
  • Lee, Jae-Jung (Division of Wood Chemistry & Microbiology, Department of Forest Products, National Institute of Forest Science) ;
  • Lee, Young-Kyu (Indoor Air Quality Analysis Center, National Instrumentation Center for Environmental Management, Seoul National University) ;
  • Lee, Jae-Won (Department of Forest Products and Technology, Chonnam National University)
  • 공성호 (전남대학교 농업생명과학대학 산림자원학부) ;
  • 안병준 (국립산림과학원 임산공학부 화학미생물과) ;
  • 이수민 (국립산림과학원 임산공학부 화학미생물과) ;
  • 이재정 (국립산림과학원 임산공학부 화학미생물과) ;
  • 이영규 (서울대학교 농생명과학공동기기원 실내환경분석센터) ;
  • 이재원 (전남대학교 농업생명과학대학 산림자원학부)
  • Received : 2016.05.02
  • Accepted : 2016.07.07
  • Published : 2016.09.25

Abstract

In this study, the thermal degradation behavior of biomass during torrefaction was studied by thermogravimetric and byproduct gas analysis. Torrefaction temperature, time, and heating rate were $220{\sim}300^{\circ}C$, 110 min, and $10{\sim}30^{\circ}C/min$, respectively. The degradation rate of yellow poplar was 8.01~8.81% at $220^{\circ}C$ and 71.86~77.38% at $300^{\circ}C$ depending on heating rate. The degradation rate significantly increased at temperature over $240^{\circ}C$. On the other hand, degradation rate of larch was relatively low as 49.58~54.15% at $300^{\circ}C$. The activation energy of yellow poplar was 87.32~91.24 kJ/mol; these values did not significantly change with heating rate. The activation energy of larch was 83.85~91.60 kJ/mol. The major components of the gas generated during torrefaction were derived from hemicellulose. The component types and concentrations increased with torrefaction severity. High concentrations of furfural and acetic acid were detected during torrefaction of yellow poplar.

본 연구에서는 반탄화 과정에서 바이오매스 열분해 거동을 열중량 분석과 발생되는 기체분석으로 확인하였다. 반응온도는 $220{\sim}300^{\circ}C$, 승온속도 $10{\sim}30^{\circ}C/min$, 반응시간은 110분으로 고정하여 분석하였다. 백합나무 중량감소율은 $220^{\circ}C$에서 8.01~8.81%, $300^{\circ}C$에서 71.86~77.38%로 나타났으며, $240^{\circ}C$ 이상에서 급격하게 증가하였다. 반면 낙엽송 중량감소율은 $300^{\circ}C$에서 49.58~54.15%로 백합나무와 비교하여 낮았다. 백합나무에 대한 활성화 에너지는 87.32~91.24 kJ/mol으로 승온속도에 따라 큰 차이를 나타내지 않았으며, 낙엽송에 대한 활성화 에너지는 83.85~91.60 kJ/mol으로 나타났다. 반탄화 과정에서 발생하는 가스성분은 대부분 헤미셀룰로오스 유래 성분이었으며 반응온도가 증가하면서 성분의 종류 및 농도도 증가하였다. 백합나무에서는 furfural, acetic acid가 고농도로 검출되었다.

Keywords

References

  1. Bates, R.B., Ghoniem, A.F. 2012. Biomass torrefaction: Modeling of volatile and solid product evolution kinetics. Bioresource Technology 124: 460-469. https://doi.org/10.1016/j.biortech.2012.07.018
  2. Bradbury, A.G., Sakai, Y., Shafizadeh, F. 1979. A kinetic model for pyrolysis of cellulose. Journal of Applied Polymer Science 23: 3271-3280. https://doi.org/10.1002/app.1979.070231112
  3. Deng, J., Wang,G.J., Kuang, J.H., Zhang, Y.L., Luo, Y.H. 2009. Pretreatment of agricultural residues for co-gaasfication via torrefaction. Journal of analytical and applied pyrolysis 86(2): 331-337. https://doi.org/10.1016/j.jaap.2009.08.006
  4. Jeeban, P., Kim, W.T., Ohm, T.I., Oh, S.C. 2014. A study on torrefaction characteristics of baggase. Korean Chemical Engineering Research 52(5): 672-677. https://doi.org/10.9713/kcer.2014.52.5.672
  5. Kang, G., Hong, S.G. 2014. The characterization of woodchip torrefaction and byproducts gas. Journal of the Korean Society of Agriculture Engineers 56(6): 55-62.
  6. Kim, K.S., Choi, E.A., Ryu, J.S., Lee, Y.P., Park, J.Y., Choi, S.H., Park, S.J. 2012. A study on pyrolysis characterization and heating value of semi-carbonized wood chip. Applied chemistry for engineering 23(5): 440-444.
  7. Lee, J.W., Kim, Y.H., Lee, S.M.,, Lee, H.W. 2012. Torrefaction characteristics of wood chip for the production of high energy density wood pellet. Korean Chemical Engineering Research 50(2): 385-389. https://doi.org/10.9713/kcer.2012.50.2.385
  8. Lee, S.M., Lee, J.W. 2014. Optimization of biomass torrefaction conditions by the Gain and Loss method and regression model analysis. Bioresource Technology 172: 438-443. https://doi.org/10.1016/j.biortech.2014.09.016
  9. Na, B.I., Lee, J.W. 2014. Study on the hydrolysis kinetics of xylan on different acid catalysts. Korean Chemical Engineering Research 52(2): 1-7. https://doi.org/10.9713/kcer.2014.52.1.1
  10. Nocquet, T., Dupont, C., Commandre, J., Grateau, M., Thiery, S., Salvador, S. 2014. Volatile species release during torrefaction of wood and its macromolecular constituents: Part 1-Experimental study. Energy 72: 180-187. https://doi.org/10.1016/j.energy.2014.02.061
  11. Prins, M., Ptasinski, K., Janssen, F. 2006. Torrefaction of wood Part 1. Weight loss kinetics. Journal of Analytical and Applied Pyrolysis 77: 28-34. https://doi.org/10.1016/j.jaap.2006.01.002
  12. Rafiqul, I.S.M., Sakinah, A.M.M. 2012. Kinetic studies on acid hydrolysis of Meranti wood sawdust for xylose production. Chemical Engineering Science 71: 431-437. https://doi.org/10.1016/j.ces.2011.11.007
  13. Shang, L., Ahrenfeldt, J., Holm, J.K., Barsberg, S., Zhang, R., Luo, Y., Egsgaard, H., Henriksen, U.B. 2013. Intrinsic kinetics and devolatilization of wheat straw during torrefaction. Journal of Analytical and Applied Pyrolysis 100: 145-152. https://doi.org/10.1016/j.jaap.2012.12.010
  14. Uemura, Y., Omar, Y.W., Tsutsui, T., Yusup, S.B. 2011. Torrefaction of oil palm wastes. Fuel 90(2): 2585-2591. https://doi.org/10.1016/j.fuel.2011.03.021
  15. Zhang, L., Xu, C., Champagne, P. 2010. Overview of recent advances in thermo-chemical conversion of biomass. Energy Conversion and Management 51: 969-982. https://doi.org/10.1016/j.enconman.2009.11.038