• 제목/요약/키워드: thermal contact

검색결과 1,212건 처리시간 0.025초

Design and Fabrication of Flexible OTFTs by using Nanocantact Printing Process (미세접촉프린팅 공정을 이용한 유연성 유기박막소자(OTFT)설계 및 제작)

  • Jo Jeong-Dai;Kim Kwang-Young;Lee Eung-Sug;Choi Byung-Oh;Esashi Masayoshi
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.506-508
    • /
    • 2005
  • In general, organic TFTs are comprised of four components: gate electrode, gate dielectric, organic active semiconductor layer, and source and drain contacts. The TFT current, in turn, is typically determined by channel length and width, carrier field effect mobility, gate dielectric thickness and permittivity, contact resistance, and biasing conditions. More recently, a number of techniques and processes have been introduced to the fabrication of OTFT circuits and displays that aim specifically at reduced fabrication cost. These include microcontact printing for the patterning of metals and dielectrics, the use of photochemically patterned insulating and conducting films, and inkjet printing for the selective deposition of contacts and interconnect pattern. In the fabrication of organic TFTs, microcontact printing has been used to pattern gate electrodes, gate dielectrics, and source and drain contacts with sufficient yield to allow the fabrication of transistors. We were fabricated a pentacene OTFTs on flexible PEN film. Au/Cr was used for the gate electrode, parylene-c was deposited as the gate dielectric, and Au/Cr was chosen for the source and drain contacts; were all deposited by ion-beam sputtering and patterned by microcontact printing and lift-off process. Prior to the deposition of the organic active layer, the gate dielectric surface was treated with octadecyltrichlorosilane(OTS) from the vapor phase. To complete the device, pentacene was deposited by thermal evaporation and patterned using a parylene-c layer. The device was shown that the carrier field effect mobility, the threshold voltage, the subthreshold slope, and the on/off current ratio were improved.

  • PDF

Condition Monitoring under In-situ Lubrication Status of Bearing Using Infrared Thermography (적외선열화상을 이용한 베어링의 실시간 윤활상태에 따른 상태감시에 관한 연구)

  • Kim, Dong-Yeon;Hong, Dong-Pyo;Yu, Chung-Hwan;Kim, Won-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • 제30권2호
    • /
    • pp.121-125
    • /
    • 2010
  • The infrared thermography technology rather than traditional nondestructive methods has benefits with non-contact and non-destructive testings in measuring for the fault diagnosis of the rotating machine. In this work, condition monitoring measurements using this advantage of thermography were proposed. From this study, the novel approach for the damage detection of a rotating machine was conducted based on the spectrum analysis. As results, by adopting the ball bearing used in the rotating machine applied extensively, an spectrum analysis with thermal imaging experiment was performed. Also, as analysing the temperature characteristics obtained from the infrared thermography for in-situ rotating ball bearing under the lubrication condition, it was concluded that infrared thermography for condition monitoring in the rotating machine at real time could be utilized in many industrial fields.

A Study of Thermal Performance for Lever Type CO Micro Gas Sensor (레버형 CO 마이크로 가스센서의 열적성능에 관한 연구)

  • Joo, Young-Cheol;Im, Jun-Hyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제6권4호
    • /
    • pp.325-330
    • /
    • 2005
  • A lever type CO micro gas sensor was fabricated by MEMS technology. In order to heat up the gas sensing material, $SnO_2$, to a target temperature, a micro heater was built on the gas sensor. The heater and electrodes were hanged on the air as a bridge type to minimize the heat loss to the silicon base. The sensing material laid on the heater and electrodes and did not contact with the silicons base. The temperature distribution of micro gas sensor was analyzed by a CFD program, FLUENT. The results showed that the temperature of silicon wafer base was almost similar to that of the room temperature, which indicates that the heat generated at the micro heater heated up effectively the sensing material. The required electric current of micro heater to heat up the sensing material to the target temperature could be predicted.

  • PDF

Alanine and serine functionalized magnetic nano-based particles for sorption of Nd(III) and Yb(III)

  • Galhoum, Ahmed A.;Mahfouz, Mohammad G.;Atia, Asem A.;Gomaa, Nabawia A.;Abdel-Rehem, Sayed T.;Vincent, Thierry;Guibal, Eric
    • Advances in environmental research
    • /
    • 제5권1호
    • /
    • pp.1-18
    • /
    • 2016
  • Magnetic nano-based sorbents have been synthesized for the recovery of two rare earth elements (REE: Nd(III) and Yb(III)). The magnetic nano-based particles are synthesized by a one-pot hydrothermal procedure involving co-precipitation under thermal conditions of Fe(III) and Fe(II) salts in the presence of chitosan. The composite magnetic/chitosan material is crosslinked with epichlorohydrin and modified by grafting alanine and serine amine-acids. These materials are tested for the binding of Nd(III) (light REE) and Yb(III) (heavy REE) through the study of pH effect, sorption isotherms, uptake kinetics, metal desorption and sorbent recycling. Sorption isotherms are well fitted by the Langmuir equation: the maximum sorption capacities range between 9 and 18 mg REE $g^{-1}$ (at pH 5). The sorption mechanism is endothermic (positive value of ${\Delta}H^{\circ}$) and contributes to increase the randomness of the system (positive value of ${\Delta}S^{\circ}$). The fast uptake kinetics can be described by the pseudo-second order rate equation: the equilibrium is reached within 4 hours of contact. The sub-micron size of sorbent particles strongly reduces the contribution of resistance to intraparticle diffusion in the control of uptake kinetics. Metal desorption using acidified thiourea solutions allows maintaining sorption efficiency for at least four successive cycles with limited loss in sorption capacity.

Interfacial Evaluation of Plasma-Treated Biodegradable Poly(p-dioxanone) Fiber/Poly(L-lactide) Composites Using Micromechanical Technique and Dynamic Contact Angle Measurement (Micromechanical 시험법과 동적접촉각 측정을 이용한 플라즈마 처리된 생분해성 Poly(p-dioxanone) 섬유강화 Poly(L-lactide) 복합재료의 계면물성 평가)

  • Park, Joung-Man;Kim, Dae-Sik;Kim, Sung-Ryong
    • Journal of Adhesion and Interface
    • /
    • 제4권1호
    • /
    • pp.18-27
    • /
    • 2003
  • Interfacial properties and microfailure degradation mechanisms of the oxygen-plasma treated biodegradable poly(p-dioxanone) (PPDO) fiber/poly(L-lactide) (PLLA)composites were investigated for the orthopedic applications as implant materials using micromechanical technique and surface wettability measurement. PPDO fiber reinforced PLLA composite can provide good mechanical performance for long hydrolysis time. The degree of degradation for PPDO fiber and PLLA matrix was measured by thermal analysis and optical observation. IFSS and work of adhesion, $W_a$ between PPDO fiber and PLLA matrix showed the maximum at the plasma treatment time, at 60 seconds. Work of adhesion was lineally proportional to the IFSS. PPDO fiber showed ductile microfailure modes at We initial state, whereas brittle microfailure modes appeared with elapsing hydrolysis time. Interfacial properties and microfailure degradation mechanisms can be important factors to control bioabsorbable composites performance because IFSS changes with hydrolytic degradation.

  • PDF

The improved facial expression recognition algorithm for detecting abnormal symptoms in infants and young children (영유아 이상징후 감지를 위한 표정 인식 알고리즘 개선)

  • Kim, Yun-Su;Lee, Su-In;Seok, Jong-Won
    • Journal of IKEEE
    • /
    • 제25권3호
    • /
    • pp.430-436
    • /
    • 2021
  • The non-contact body temperature measurement system is one of the key factors, which is manage febrile diseases in mass facilities using optical and thermal imaging cameras. Conventional systems can only be used for simple body temperature measurement in the face area, because it is used only a deep learning-based face detection algorithm. So, there is a limit to detecting abnormal symptoms of the infants and young children, who have difficulty expressing their opinions. This paper proposes an improved facial expression recognition algorithm for detecting abnormal symptoms in infants and young children. The proposed method uses an object detection model to detect infants and young children in an image, then It acquires the coordinates of the eyes, nose, and mouth, which are key elements of facial expression recognition. Finally, facial expression recognition is performed by applying a selective sharpening filter based on the obtained coordinates. According to the experimental results, the proposed algorithm improved by 2.52%, 1.12%, and 2.29%, respectively, for the three expressions of neutral, happy, and sad in the UTK dataset.

A Study on the Lifetime Estimation and Leakage Test of Rubber O-ring in Contacted with Fuel at Accelerated Thermal Aging Conditions (가속노화조건 하 연료접촉 고무오링의 수명예측 및 누유시험 연구)

  • Chung, Kunwoo;Hong, Jinsook;Kim, Young-wun;Han, Jeongsik;Jeong, Byunghun;Kwon, Youngil
    • Tribology and Lubricants
    • /
    • 제35권4호
    • /
    • pp.222-228
    • /
    • 2019
  • As rubber products such as O-rings, which are also known as packings or toric joints, come in regular, long term contact with liquid fuel, they can eventually swell, become mechanically weakened, and occasionally crack; this diminishes both their usefulness and intrinsic lifetime and could cause leaks during the steady-state flow condition of the fuel. In this study, we evaluate the lifetime of such products through compression set tests of FKM, a family of fluorocarbon elastomer materials defined by the ASTM international standard D141; these materials have great compression, sunlight, and ozone resistance as well as a low gas absorption rate. In this process, O-rings are immersed in the liquid fuel of airtight containers that can be expressed as a compression set, and the liquid fuel leakage in a flow rig tester at variable temperatures over 12 months is investigated. Using the Power Law model, our study determined a theoretical O-ring lifetime of 2,647 years, i.e. a semi-permanent lifespan, by confirming the absence of liquid fuel leakage around the O-ring assembled fittings. These results indicate that the FKM O-rings are significantly compatible for fuel tests to evaluate long-term sealing conditions.

Characteristics and Development Trends of Heat-Resistant Composites for Flight Propulsion System (비행체 추진기관용 내열 복합재의 특성 및 개발 동향)

  • Hwang, Ki-Young;Park, Jong Kyoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • 제47권9호
    • /
    • pp.629-641
    • /
    • 2019
  • In order to limit the temperature rise of the structure to a certain level or less while maintaining the aerodynamic shape of solid rocket nozzle by effectively blocking a large amount of heat introduced by the combustion gas of high temperature and high pressure, the heat-resistant materials such as C/C composite having excellent ablation resistance are applied to a position in contact with the combustion gas, and the heat-insulating materials having a low thermal diffusivity are applied to the backside thereof. SiC/SiC composite, which has excellent oxidation resistance, is applied to gas turbine engines and contributes to increase engine performance due to light weight and heat-resistant improvement. Scramjet, flying at hypersonic speed, has been studying the development of C/SiC structures using the endothermic fuel as a coolant because the intake air temperature is very high. In this paper, characteristics, application examples, and development trends of various heat-resistant composites used in solid rocket nozzles, gas turbine engines, and ramjet/scramjet propulsions were discussed.

Removal characteristics of chromium by activated carbon/CoFe2O4 magnetic composite and Phoenix dactylifera stone carbon

  • Foroutan, Rauf;Mohammadi, Reza;Ramavandi, Bahman;Bastanian, Maryam
    • Korean Journal of Chemical Engineering
    • /
    • 제35권11호
    • /
    • pp.2207-2219
    • /
    • 2018
  • Activated carbon (AC) was synthesized from Phoenix dactylifera stones and then modified by $CoFe_2O_4$ magnetic nanocomposite for use as a Cr(VI) adsorbent. Both $AC/CoFe_2O_4$ composite and AC were fully characterized by FTIR, SEM, XRD, TEM, TGA, and VSM techniques. Based on the surface analyses, the addition of $CoFe_2O_4$ nanoparticles had a significant effect on the thermal stability and crystalline structure of AC. Factors affecting chromium removal efficiency like pH, dosage, contact time, temperature, and initial Cr(VI) concentration were investigated. The best pH was found 2 and 3 for Cr adsorption by AC and $AC/CoFe_2O_4$ composite, respectively. The presence of ion sulfate had a greater effect on the chromium sorption efficiency than nitrate and chlorine ions. The results illustrated that both adsorbents can be used up to seven times to adsorb chromium. The adsorption process was examined by three isothermal models, and Freundlich was chosen as the best one. The experimental data were well fitted by pseudo-second-order kinetic model. The half-life ($t_{1/2}$) of hexavalent chromium using AC and $AC/CoFe_2O_4$ magnetic composite was obtained as 5.18 min and 1.52 min, respectively. Cr(VI) adsorption by AC and $AC/CoFe_2O_4$ magnetic composite was spontaneous and exothermic. In general, our study showed that the composition of $CoFe_2O_4$ magnetic nanoparticles with AC can increase the adsorption capacity of AC from 36 mg/L to 70 mg/L.

A study on the manufacturing of metal/plastic multi-components using the DSI molding (DSI 성형을 이용한 금속/플라스틱 복합 부품 제조에 관한 연구)

  • Ha, Seok-Jae;Cha, Baeg-Soon;Ko, Young-Bae
    • Design & Manufacturing
    • /
    • 제14권4호
    • /
    • pp.71-77
    • /
    • 2020
  • Various manufacturing technologies, including over-molding and insert-injection molding, are used to produce hybrid plastics and metals. However, there are disadvantages to these technologies, as they require several steps in manufacturing and are limited to what can be reasonably achieved within the complexities of part geometry. This study aims to determine a practical approach for producing metal/plastic hybrid components by combining plastic injection molding and metal die casting to create a new hybrid metal/plastic molding process. The integrated metal/plastic hybrid injection molding process developed in this study uses the proven method of multi-component technology as a basis to combine plastic injection molding with metal die casting into one integrated process. In this study, the electrical conductivity and ampacity were verified to qualify the new process for the production of parts used in electronic devices. The electrical conductivity was measured, contacting both sides of the test sample with constant pressure, and the resistivity was measured using a micro ohmmeter. Also, the specific conductivity was subsequently calculated from the resistivity and contact surface of the conductor path. The ampacity defines the maximum amount of current a conductive path can carry before sustaining immediate or progressive deterioration. The manufactured hybrid multi-components were loaded with increasing currents, while the temperature was recorded with an infrared camera. To compare the measured infrared images, an electro-thermal simulation was conducted using commercial CAE software to predict the maximum temperature of the power loaded parts. Overall, during the injection molding process, it was demonstrated that multifunctional parts can be produced for electric and electronic applications.