DOI QR코드

DOI QR Code

Alanine and serine functionalized magnetic nano-based particles for sorption of Nd(III) and Yb(III)

  • Galhoum, Ahmed A. (Centre des Materiaux des Mines d'Ales, Ecole des mines d'Ales) ;
  • Mahfouz, Mohammad G. (Nuclear Materials Authority) ;
  • Atia, Asem A. (Chemistry Department, Faculty of Science, Menoufia University) ;
  • Gomaa, Nabawia A. (Nuclear Materials Authority) ;
  • Abdel-Rehem, Sayed T. (Chemistry Department, Faculty of Science, Ain Shams University) ;
  • Vincent, Thierry (Centre des Materiaux des Mines d'Ales, Ecole des mines d'Ales) ;
  • Guibal, Eric (Centre des Materiaux des Mines d'Ales, Ecole des mines d'Ales)
  • Received : 2015.07.23
  • Accepted : 2016.01.15
  • Published : 2016.03.25

Abstract

Magnetic nano-based sorbents have been synthesized for the recovery of two rare earth elements (REE: Nd(III) and Yb(III)). The magnetic nano-based particles are synthesized by a one-pot hydrothermal procedure involving co-precipitation under thermal conditions of Fe(III) and Fe(II) salts in the presence of chitosan. The composite magnetic/chitosan material is crosslinked with epichlorohydrin and modified by grafting alanine and serine amine-acids. These materials are tested for the binding of Nd(III) (light REE) and Yb(III) (heavy REE) through the study of pH effect, sorption isotherms, uptake kinetics, metal desorption and sorbent recycling. Sorption isotherms are well fitted by the Langmuir equation: the maximum sorption capacities range between 9 and 18 mg REE $g^{-1}$ (at pH 5). The sorption mechanism is endothermic (positive value of ${\Delta}H^{\circ}$) and contributes to increase the randomness of the system (positive value of ${\Delta}S^{\circ}$). The fast uptake kinetics can be described by the pseudo-second order rate equation: the equilibrium is reached within 4 hours of contact. The sub-micron size of sorbent particles strongly reduces the contribution of resistance to intraparticle diffusion in the control of uptake kinetics. Metal desorption using acidified thiourea solutions allows maintaining sorption efficiency for at least four successive cycles with limited loss in sorption capacity.

Keywords

Acknowledgement

Supported by : French Embassy in Egypt (Institut Francais d'Egypte)

References

  1. Abdel-Rahman, A., A.H., El-Aassy, I.E.E., Fadia, Y.A. and Hamza, M.F. (2010), "Studies on the uptake of rare earth elements on polyacrylamidoxime resins from natural concentrate leachate solutions", J. Dispersion Sci. Technol., 31(8), 1128-1135. https://doi.org/10.1080/01932690903224821
  2. Donia, A.M., Atia, A.A. and Elwakeel, K.Z. (2007), "Recovery of gold(III) and silver(I) on a chemically modified chitosan with magnetic properties", Hydrometallurgy, 87(3-4), 197-206. https://doi.org/10.1016/j.hydromet.2007.03.007
  3. Freundlich, H.M.F. (1906), "Uber die adsorption in lasungen", Z. Phys. Chem., 57, 385-470.
  4. Galhoum, A.A., Atia, A.A., Mahfouz, M.G., Abdel-Rehem, S.T., Gomaa, N.A., Vincent, T. and Guibal, E. (2015), "Dy(III) recovery from dilute solutions using magnetic-chitosan nano-based particles grafted with amino acids", J. Mater. Sci., 50(7), 2832-2848. https://doi.org/10.1007/s10853-015-8845-z
  5. Guibal, E. (2004), "Interactions of metal ions with chitosan-based sorbents: a review", Sep. Purif. Technol., 38(1), 43-74. https://doi.org/10.1016/j.seppur.2003.10.004
  6. Ho, Y.S. and McKay, G. (1999), "Pseudo-second order model for sorption processes", Proc. Biochem., 34(5), 451-465. https://doi.org/10.1016/S0032-9592(98)00112-5
  7. Hosoba, M., Oshita, K., Katarina, R.K., Takayanagi, T., Oshima, M. and Motomizu, S. (2009), "Synthesis of novel chitosan resin possessing histidine moiety and its application to the determination of trace silver by ICP-AES coupled with triplet automated-pretreatment system", Anal. Chim. Acta, 639(1-2), 51-56. https://doi.org/10.1016/j.aca.2009.02.050
  8. Hubicka, H. and Kolodynska, D. (2000), "Investigation into the use of macroporous anion exchangers for the sorption and separation of iminodiacetate complexes of lanthanum(III) and neodymium(III)", Adsorpt. Sci. Technol., 18(8), 719-726. https://doi.org/10.1260/0263617001493765
  9. Innocenzi, V., De Michelis, I., Kopacek, B. and Veglio, F. (2014), "Yttrium recovery from primary and secondary sources: A review of main hydrometallurgical processes", Waste Manage. (Oxford), 34(7), 1237-1250. https://doi.org/10.1016/j.wasman.2014.02.010
  10. Khan, A., Badshah, S. and Airoldi, C. (2011), "Biosorption of some toxic metal ions by chitosan modified with glycidylmethacrylate and diethylenetriamine", Chem. Eng. J., 171(1), 159-166. https://doi.org/10.1016/j.cej.2011.03.081
  11. Lagergren, S. (1898), "About the theory of so-called adsorption of soluble substances", Kungliga Svenska Vetenskapsakademiens, 24, 1-39.
  12. Langmuir, I. (1918), "The adsorption of gases on plane surfaces of glass, mica and platinum", J. Am. Chem. Soc., 40, 1361-1402. https://doi.org/10.1021/ja02242a004
  13. Melnyk, I.V., Goncharyk, V.P., Kozhara, L.I., Yurchenko, G.R., Matkovsky, A.K., Zub, Y.L. and Alonso, B. (2012), "Sorption properties of porous spray-dried microspheres functionalized by phosphonic acid groups", Microporous Mesoporous Mater., 153, 171-177. https://doi.org/10.1016/j.micromeso.2011.12.027
  14. Oshita, K., Takayanagi, T., Oshima, M. and Motomizu, S. (2007), "Adsorption behavior of cationic and anionic species on chitosan resins possessing amino acid moieties", Anal. Sci., 23(12), 1431-1434. https://doi.org/10.2116/analsci.23.1431
  15. Ren, Y., Abbood, H.A., He, F., Peng, H. and Huang, K. (2013), "Magnetic EDTA-modified chitosan/SiO2/Fe3O4 adsorbent: Preparation, characterization, and application in heavy metal adsorption", Chem. Eng. J., 226, 300-311. https://doi.org/10.1016/j.cej.2013.04.059
  16. Roosen, J. and Binnemans, K. (2014), "Adsorption and chromatographic separation of rare earths with EDTA- and DTPA-functionalized chitosan biopolymers", J. Mater. Chem. A, 2(5), 1530-1540. https://doi.org/10.1039/C3TA14622G
  17. Ruiz, M., Sastre, A.M. and Guibal, E. (2002a), "Pd and Pt recovery using chitosan gel beads: II. Influence of chemical and physical modification on sorption properties", Sep. Sci. Technol., 37(10), 2385-2403. https://doi.org/10.1081/SS-120003519
  18. Ruiz, M.A., Sastre, A.M. and Guibal, E. (2002b), "Pd and Pt recovery using chitosan gel beads: I. Influence of drying process on diffusion properties", Sep. Sci. Technol., 37(9), 2143-2166. https://doi.org/10.1081/SS-120003506
  19. Sun, X., Ji, Y., Chen, J. and Ma, J. (2009), "Solvent impregnated resin prepared using task-specific ionic liquids for rare earth separation", J. Rare Earths, 27(6), 932-936. https://doi.org/10.1016/S1002-0721(08)60365-8
  20. Texier, A.C., Andres, Y. and Le Cloirec, P. (1999), "Selective biosorption of lanthanide (La, Eu, Yb) ions by Pseudomonas aeruginosa", Environ. Sci. Technol., 33(3), 489-495. https://doi.org/10.1021/es9807744
  21. Tien, C. (1994), Adsorption Calculations and Modeling, Butterworth-Heinemann, Newton, MA.
  22. Vander Hoogerstraete, T. and Binnemans, K. (2014), "Highly efficient separation of rare earths from nickel and cobalt by solvent extraction with the ionic liquid trihexyl(tetradecyl) phosphonium nitrate: a process relevant to the recycling of rare earths from permanent magnets and nickel metal hydride batteries", Green Chem., 16(3), 1594-1606. https://doi.org/10.1039/C3GC41577E
  23. Vijayaraghavan, K., Sathishkumar, M. and Balasubramanian, R. (2011), "Interaction of rare earth elements with a brown marine alga in multi-component solutions", Desalination, 265(1-3), 54-59. https://doi.org/10.1016/j.desal.2010.07.030
  24. Vlachou, A., Symeopoulos, B.D. and Koutinas, A.A. (2009), "A comparative study of neodymium sorption by yeast cells", Radiochim. Acta, 97(8), 437-441. https://doi.org/10.1524/ract.2009.1632
  25. Wang, Z.H., Ma, G.X., Lu, J., Liao, W.P. and Li, D.Q. (2002), "Separation of heavy rare earth elements with extraction resin containing 1-hexyl-4-ethyloctyl isopropylphosphonic acid", Hydrometallurgy, 66(1-3), 95-99. https://doi.org/10.1016/S0304-386X(02)00109-3
  26. Weber, W.J. and Morris, J.C. (1963), "Kinetics of adsorption on carbon from solutions", J. Sanit. Eng. Div., ASCE, 89(2), 31-60.
  27. Wu, D., Zhang, L., Wang, L., Zhu, B. and Fan, L. (2011), "Adsorption of lanthanum by magnetic alginatechitosan gel beads", J. Chem. Technol. Biotechnol., 86(3), 345-352. https://doi.org/10.1002/jctb.2522
  28. Xie, F., Zhang, T.A., Dreisinger, D. and Doyle, F. (2014), "A critical review on solvent extraction of rare earths from aqueous solutions", Miner. Eng., 56, 10-28. https://doi.org/10.1016/j.mineng.2013.10.021
  29. Xiong, C., He, R., Pi, L., Li, J., Yao, C., Jiang, J. and Zheng, X. (2015), "Adsorption of neodymium(III) on acrylic resin (110 resin) from aqueous solutions", Sep. Sci. Technol., 50(4), 564-572. https://doi.org/10.1080/01496395.2014.955204
  30. Xiong, C., Yao, C. and Wang, Y. (2006), "Sorption behaviour and mechanism of ytterbium(III) on iminodiacetic acid resin", Hydrometallurgy, 82(3-4), 190-194. https://doi.org/10.1016/j.hydromet.2006.03.012
  31. Xu, J., Chen, M., Zhang, C. and Yi, Z. (2013), "Adsorption of uranium(VI) from aqueous solution by diethylenetriamine-functionalized magnetic chitosan", J. Radioanal. Nucl. Chem., 298(2), 1375-1383. https://doi.org/10.1007/s10967-013-2571-2
  32. Xu, T. and Peng, H. (2009), "Formation cause, composition analysis and comprehensive utilization of rare earth solid wastes", J. Rare Earths, 27(6), 1096-1102. https://doi.org/10.1016/S1002-0721(08)60394-4
  33. Yang, G., Tang, L., Lei, X., Zeng, G., Cai, Y., Wei, X., Zhou, Y., Li, S., Fang, Y. and Zhang, Y. (2014), "Cd(II) removal from aqueous solution by adsorption on ${\alpha}$-ketoglutaric acid-modified magnetic chitosan", Appl. Surf. Sci., 292, 710-716. https://doi.org/10.1016/j.apsusc.2013.12.038
  34. Zeldowitsch, J. (1934), "The catalytic oxidation of carbon monoxide on manganese dioxide", Acta Physicochimica URSS, 1, 364-449.
  35. Zhang, W., Ye, G. and Chen, J. (2012), "TRPO impregnated Levextrel resin: Synthesis and extraction behavior of Zr (IV) and Nd (III) ions", Sep. Sci. Technol., 48(2), 263-271. https://doi.org/10.1080/01496395.2012.675002
  36. Zheng, Z. and Xiong, C. (2011), "Adsorption behavior of ytterbium (III) on gel-type weak acid resin", J. Rare Earths, 29(5), 407-412. https://doi.org/10.1016/S1002-0721(10)60469-3
  37. Zhou, L., Liu, Z., Liu, J. and Huang, Q. (2010), "Adsorption of Hg(II) from aqueous solution by ethylenediamine-modified magnetic crosslinking chitosan microspheres", Desalination, 258(1-3), 41-47. https://doi.org/10.1016/j.desal.2010.03.051
  38. Zhou, Z., Lin, S., Yue, T. and Lee, T.-C. (2014), "Adsorption of food dyes from aqueous solution by glutaraldehyde cross-linked magnetic chitosan nanoparticles", J. Food Eng., 126, 133-141. https://doi.org/10.1016/j.jfoodeng.2013.11.014

Cited by

  1. Grafting of arginine and glutamic acid onto cellulose for enhanced uranyl sorption vol.24, pp.3, 2017, https://doi.org/10.1007/s10570-017-1193-1
  2. Aspartic acid grafting on cellulose and chitosan for enhanced Nd(III) sorption vol.113, 2017, https://doi.org/10.1016/j.reactfunctpolym.2017.02.001
  3. Rare earths from secondary sources: profitability study vol.5, pp.2, 2016, https://doi.org/10.12989/aer.2016.5.2.125
  4. Vanadium(V) removal from aqueous solutions using a new composite adsorbent (BAZLSC): Optimization by response surface methodology vol.6, pp.3, 2016, https://doi.org/10.12989/aer.2017.6.3.173
  5. A simple and rapid approach to modeling chromium breakthrough in fixed bed adsorber vol.7, pp.1, 2016, https://doi.org/10.12989/aer.2018.7.1.029