• 제목/요약/키워드: thermal analysis properties

검색결과 2,222건 처리시간 0.031초

Thermal buckling of FGM beams having parabolic thickness variation and temperature dependent materials

  • Arioui, Othman;Belakhdar, Khalil;Kaci, Abdelhakim;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제27권6호
    • /
    • pp.777-788
    • /
    • 2018
  • An investigation on the thermal buckling resistance of simply supported FGM beams having parabolic-concave thickness variation and temperature dependent material properties is presented in this paper. An analytical formulation based on the first order beam theory is derived and the governing differential equation of thermal stability is solved numerically using finite difference method. a function of thickness variation is introduced which controls the parabolic variation intensity of the beam thickness without changing its original material volume. The results showed the high importance of taking into account the temperature-dependent material properties in the thermal buckling analysis of such critical beam sections. Different Influencing parametric on the thermal stability are studied which may help in design guidelines of such complex structures.

기계적 및 열적 물성을 고려한 클러치 압력판의 거동해석 (Analysis of Pressure Plate Behavior of a Clutch Including Thermal and Mechanical Material Properties)

  • 허만대;이상욱;김국용;강성수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권4호
    • /
    • pp.524-532
    • /
    • 2009
  • In the mechanical clutches, the pressure plate is one of the important parts for transferring the power and reducing the vibration. Instead of gray and ductile irons, CGI(Compacted Graphite Cast Iron) is concerned to be the replacement recently. A thermo-mechanical coupled analysis was performed to investigate the behavior of the pressure plate for manual clutches. Thermal and mechanical properties of three kinds of cast irons were obtained from the mechanical experiments and referred other technical reports. The results of FEM analysis, were well match with the experimental ones. In this designated FEM method, temperature distribution, stress distribution and thermal deformation were successfully gained and these results will help to design the pressure plate which was made by cast irons including CGI.

매스 콘크리트 구조물의 수화열 및 응력 해석의 민감도 분석 (Sensitivity Study of Thermal Stresses in Mass Concrete Structures)

  • 차수원;김광수
    • 한국안전학회지
    • /
    • 제16권4호
    • /
    • pp.160-167
    • /
    • 2001
  • Cracking in connote structures is one of the main issues of structural design next to ensuring the load-bearing capacity. Thermal analysis is used to prevent thermal mucking, but concrete properties are uncertain variable, and analysis results have uncertainty, too. In this study, sensitivity analysis is performed to investigate the effect of conductivity, specific heal and pouring temperature. The results show that lower conductivity and higher specific heat increase the maximum temperature and maximum tensile stress. The structure with internal restraint is mostly influenced by the change of conductivity and specific heat.

  • PDF

Mechanical and Thermal Properties of Polypropylene/Wax/MAPP Composites Reinforced with High Loading of Wood Flour

  • Lee, Sun-Young;Kang, In-Aeh;Doh, Geum-Hyun;Mohan, D. Jagan
    • 한국응용과학기술학회지
    • /
    • 제24권4호
    • /
    • pp.416-426
    • /
    • 2007
  • Polypropylene (PP) composites with wood flour/wax/coupling agent were manufactured by melt compounding and injection molding. The influence of wood flour(WF), wax, and coupling agent on the mechanical and thermal properties of the composites was investigated. The addition of wood flour to neat PP has the higher tensile modulus and strength compared with neat PP. The presence of wax also improved the tensile modulus. At the same loading of PP and WF, the addition of coupling agent highly decreased the tensile modulus, and increased the tensile strength. From thermogravimetric analysis (TGA), the addition of wax improved the thermal stability of the composites in the later stages of degradation. The presence of MAPP and wood flour in turn decreased thermal stabilities of composites. From differential scanning calorimetry analysis (DSC), neither the loading of wax. nor the presence of MAPP has shown significant effect on the thermal transition of composites.

직물의 구성인자가 보온성에 미치는 영향 (The Effect of Structural Characteristics of Selected Wool Fabrics on Mechanical and Thermal Properties)

  • 전병익
    • 한국산업융합학회 논문집
    • /
    • 제9권1호
    • /
    • pp.5-11
    • /
    • 2006
  • This study was performed to determine the effect of structural characteristics of selected wool fabrics on mechanical and thermal properties. 52 wool fabrics, including 18 plain woven fabrics and 34 twill and satin woven fabrics were used as samples woven with various weft density for the study. Several physical characteristics such as mechanical properties, keeping warmth ratio of wool fabrics were measured. Data analyses including 1) analysis of tactile and thermal comfort sensation were performed. the following were obtained from the results: The main factors affecting keeping warmth ratio were thickness and bulk density. The keeping warmth ratio of samples increased with increasing thickness and decreasing bulk density of samples. In addition, coefficient of friction of the samples increased with keeping warmth ratio of samples. The above results show that wearing sensation and comfort properties of fabrics are changed depending on the end-use, and thus, above results can be used to manufacture of fabrics for specific end-use with high comfort properties.

  • PDF

Thermal analysis on composite girder with hybrid GFRP-concrete deck

  • Xin, Haohui;Liu, Yuqing;Du, Ao
    • Steel and Composite Structures
    • /
    • 제19권5호
    • /
    • pp.1221-1236
    • /
    • 2015
  • Since the coefficients of thermal expansion (CTE) between concrete and GFRP, steel and GFRP are quite different, GFRP laminates with different laminas stacking-sequence present different thermal behavior and currently there is no specification on mechanical properties of GFRP laminates, it is necessary to investigate the thermal influence on composite girder with stay-in-place (SIP) bridge deck at different levels and on different scales. This paper experimentally and theoretically investigated the CTE of GFRP at lamina's and laminate's level on micro-mechanics scales. The theoretical CTE values of laminas and laminates agreed well with test results, indicating that designers could obtain thermal properties of GFRP laminates with different lamina stacking-sequence through micro-mechanics methods. On the basis of the CTE tests and theoretical analysis, the thermal behaviors of composite girder with hybrid GFRP-concrete deck were studied numerically and theoretically on macro-mechanics scales. The theoretical results of concrete and steel components of composite girder agreed well with FE results, but the theoretical results of GFRP profiles were slightly larger than FE and tended to be conservative at a safety level.

Thermal buckling Analysis of functionally graded plates using trigonometric shear deformation theory for temperature-dependent material properties

  • Lazreg Hadji;Royal Madan;Hassen Ait Atmane;Fabrice Bernard;Nafissa Zouatnia;Abdelkader Safa
    • Structural Engineering and Mechanics
    • /
    • 제91권6호
    • /
    • pp.539-549
    • /
    • 2024
  • In this paper, thermal buckling analysis was conducted using trigonometric shear deformation theory, which employs only four unknowns instead of five. This present theory is variationally consistent, and accounts for a trigonometric variation of the transverse shear strains across the thickness and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The grading is provided along the thickness of the plate as per power law volume fraction variation of metal-matrix ceramic reinforced composite. The non-linear governing equation problem was solved for simply supported boundary conditions. Three types of thermal loads are assumed in this work: uniform, linear and non-linear distribution through-the-thickness. It is well known that material properties change with temperature variations and so the analysis was performed for both the cases: temperature-dependent (TD) and temperature-independent (TID) material properties. The impact on thermal buckling for both linear and non-linear temperature variation was considered. The results were validated for the TID case with other theories and were found to be in good agreement. Furthermore, a comprehensive analysis was performed to study the impact of grading indices and geometrical parameters, such as aspect ratio (a/b) and side-to-thickness ratio (a/h), on the thermal buckling of the FG plate.

복합적인 환경인자가 탄소섬유강화 복합재의 기계적 및 열분석 특성에 미치는 영향 (Effects of Combined Environmental Factors on Mechanical and Thermal Analysis Properties of Graphite/Epoxy Composites)

  • 이상진;이종근;윤성호
    • 대한기계학회논문집A
    • /
    • 제26권7호
    • /
    • pp.1416-1425
    • /
    • 2002
  • In this study, the effects of combined environmental factors on mechanical and thermal analysis properties of graphite/epoxy composites were evaluated by the use of an accelerated aging test. Environmental factors such as temperature, moisture. and ultraviolet were considered. A xenon-arc lamp was utilized for ultraviolet light. and exposure times of up to 3000 hours were applied. Several types of specimens - tensile. bending, and shear specimens those are transverse to the fiber direction, and bending specimens those are parallel to the tiber direction - were used to investigate the effects of environmental factors on mechanical properties of the composites. Also, glass transition temperature, storage shear modulus, loss shear modulus, and tan ${\delta}$ were measured as a function of exposure times through a dynamic mechanical analyzer. In addition. a suitable testing method for determining the effect of environmental factors on mechanical properties is suggested by comparing the results from using two different types of strain measuring sensors. Finally, composite surfaces exposed to environmental factors were examined using a scanning electron microscope.

A Study of Thermal Properties of LDPE-Nanoclay Composite Films

  • Bumbudsanpharoke, Nattinee;Ko, Seonghyuk
    • 한국포장학회지
    • /
    • 제21권3호
    • /
    • pp.107-113
    • /
    • 2015
  • This work focused on the study of thermal properties and kinetic behavior of LDPE-nanoclay composite films. The effect of nanoclay content (0.5, 1, 3, and 5 wt%) on thermal stability and crystallization characteristics of the nanocomposites were investigated by Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). The results from endothermic curve showed that the nanoclay played an important role in the crystallization of nanocomposites by acting as nucleating agent. From exothermic curve, there was a crystallization temperature shift which was attributed to crystallization process induced by nanoclay. The TGA results showed that the addition of nanoclay significantly increased the thermal stability of LDPE matrix, which was likely due to the characteristic of layered silicates/clays dispersed in LDPE matrix as well as the formation of multilayered carbonaceous-silicate char. A well-known Coats-Redfern method was used to evaluate the decomposition activation energy of nanocomposite. It was demonstrated that introducing of nanoclay to LDPE matrix escalated the activation energy of nanocomposite decomposition resulting in thermal stability improvement.

Preparation and Properties Study of $Cu-MoSi_2$ Composites

  • Yi, Xiaoou;Xiong, Weihao;Li, Jian
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.370-371
    • /
    • 2006
  • The particulate strengthened $Cu-MoSi_2$ composites were prepared by a PM process to develop novel copper based composites with reasonable strength, high thermal conductivity and low thermal expansion coefficient. Microstructure of the composites was investigated by SEM; the tensile strength, elongation, thermal conductivity and thermal expansion coefficient (CTE) of the composites were examined. A comparative analysis of mechanical and thermal properties of various Cu-matrix composites currently in use was given and the strengthening mechanisms for the $Cu-MoSi_2$ composites were discussed.

  • PDF