DOI QR코드

DOI QR Code

Mechanical and Thermal Properties of Polypropylene/Wax/MAPP Composites Reinforced with High Loading of Wood Flour

  • Lee, Sun-Young (Division of Environmental Material Engineering, Department of Forest Products, Korea Forest Research Institute) ;
  • Kang, In-Aeh (Division of Environmental Material Engineering, Department of Forest Products, Korea Forest Research Institute) ;
  • Doh, Geum-Hyun (Division of Environmental Material Engineering, Department of Forest Products, Korea Forest Research Institute) ;
  • Mohan, D. Jagan (Division of Environmental Material Engineering, Department of Forest Products, Korea Forest Research Institute)
  • Published : 2007.12.31

Abstract

Polypropylene (PP) composites with wood flour/wax/coupling agent were manufactured by melt compounding and injection molding. The influence of wood flour(WF), wax, and coupling agent on the mechanical and thermal properties of the composites was investigated. The addition of wood flour to neat PP has the higher tensile modulus and strength compared with neat PP. The presence of wax also improved the tensile modulus. At the same loading of PP and WF, the addition of coupling agent highly decreased the tensile modulus, and increased the tensile strength. From thermogravimetric analysis (TGA), the addition of wax improved the thermal stability of the composites in the later stages of degradation. The presence of MAPP and wood flour in turn decreased thermal stabilities of composites. From differential scanning calorimetry analysis (DSC), neither the loading of wax. nor the presence of MAPP has shown significant effect on the thermal transition of composites.

Keywords

References

  1. R. M. Rowell, and A. R. Sanadi, Proceedings of the Fourth International Conference on woodfiber-plastic Composites, Forest Products Society, Madison, WI, May 12-14, p 324 (1988)
  2. S. Y. Lee, H. S. Yang, H. J. Kim, C. S. Jeong, B. S. Lim, and J. N. Lee, Creep behavior and manufacturing parameters of wood flour filled polypropylene composites, Compos. Struct., 65(3/4), 459 (2004) https://doi.org/10.1016/j.compstruct.2003.12.007
  3. H. S. Yang, H. J. Kim, H. J. Park, B. J. Lee, and T. S. Hwang, Water absorption behavior and mechanical properties of lignocellulosic filler-polyolefin biocomposites, Compos. Struct., 72(4), 429 (2004)
  4. M. N. Ichazo, C. Albano, J. Gonzalez, R Rerera, and M. V. Candal, Polypropylene/wood flour composites: treatments and properties, Compo. Struct., 54(2/3), 207 (2001) https://doi.org/10.1016/S0263-8223(01)00089-7
  5. C. J. Sadhan, and A. Prieto, On the development of natural fiber composites of high-temperature thermoplastic polymers, J. Appl. Polym. Sci., 86, 2159 (2002) https://doi.org/10.1002/app.11073
  6. C. Clemons, Wood-plastic composites in the United States: the interfacing of two industries, For. Prod. J. 52(6), 10 (2002)
  7. M. Schlechter, Plastic wood:technologies, market. Business Communication Co., p.179 (2005)
  8. L. M. Matuana, and P. A. Heiden, Wood Composites in, Encyclopedia of Polymer Science and Technology, Jacqueline I. Kroschwitz, Editor, John Wiley & Sons, Inc. 2004
  9. S. Y. Lee, G. H. Doh, and I. A. Kang, Thermal behavior of Hwangto and wood flour reinforced high density polyethylene (HDPE) composites. Mokchae Konghak 2006; 35(5):59-66
  10. H. S. Kim, S Kim, H. J. Kim, and H. S. Yang, Thermal properties of bio-flour-filled polyolefin composites with different compatibilizing agent type and content, Thermochim Acta, 451, 181 (2006) https://doi.org/10.1016/j.tca.2006.09.013
  11. J. X. Li , J. Wu, and C. M. Chan, Thermoplastic nanocomposites, Polym, 41(18), 6935 (2000) https://doi.org/10.1016/S0032-3861(00)00107-5
  12. C. Klason, J. Kubat, and H. E. Stromvall, Efficiency of cellulosic fillers in common thermoplastics, Part 1. Filling without processing aids or coupling agents, Int. J. Polym: Mater., 10, 159 (1984) https://doi.org/10.1080/00914038408080268
  13. D. Maldas, and B. V. Kokta, Improving adhesion of wood fiber with polystyrene by the chemical treatment of fiber with a coupling agent and the influence on the mechanical properties of composites, J. Adhes. Sci. Technol., 3(7), 529 (1989) https://doi.org/10.1163/156856189X00380
  14. J. Z. Lu, Q. Wu, and H. S. McNabb, Chemical coupling in wood fiber and polymer composites: A review of coupling agents and treatments, Wood Fiber Sci., 32(1), 88 (2000)
  15. J. Z. Lu, Q. Wu, and I. Neglescu, The influence of maleation on wood surface wettability and interfacial bonding strength in wood-PVC laminates, Wood Fiber Sci. 34(3), 434 (2002)
  16. H. S. Yang, H. J. Kim, H. J. Park, B. J. Lee, and T. S. Hwang, Effect of compatibilizing agents on rice-husk flour reinforced polypropylene composites. Compos. Struct. 77(1), 45 (2007) https://doi.org/10.1016/j.compstruct.2005.06.005
  17. L.M. Sherman, httpv/www.ptonline.com/articles/200407fal.html (2004)
  18. T. N. Mtshali, I. Krupa, and A. S. Luyt, Effect of cross-linking on the thermal properties of LDPE/wax blends, Thermochim. Acta, 380, 47 (2001) https://doi.org/10.1016/S0040-6031(01)00636-0
  19. V. Djokovic, T. N. Mtshali, and A. S. Luyt, The influence of wax content on the physical properties of low-density polyethylene-wax blends, Polym. Int., 52, 999 (2003) https://doi.org/10.1002/pi.1180
  20. K. Joseph, S. Thomas, and C. Pavitthran, Effect of chemical treatment on the tensile properties of short sisal fiber-reinforced polyethylene composites, Polym, 50, 5139 (1996)
  21. M.A Mokoena, V. Djokovic, and A.S. Luyt, Composites of linear low density polyethylene and short sisal fibres & colon; The effects of peroxide treatment, J. Mater. Sci. 39, 3403 (2004) https://doi.org/10.1023/B:JMSC.0000026943.47803.0b
  22. N. Stark, and R. E. Rowlands, Effects of wood fiber characteristics on mechanical properties of wood/polypropylene composites, Wood Fiber Sci., 35(2), 167 (2003)
  23. G. Princhard, Quick reference guide. In: Princhard G, editor. Plastics additives: an A - Z reference. New York, NY: Chapman and Hall, p. 12 (1998)
  24. I. Krupa, and A. S. Luyt, Mechanical properties of uncrosslinked and crosslinked linear low-density polyethylene/wax blends, J. Appl. Polym. Sci. 81, 973 (2001) https://doi.org/10.1002/app.1519
  25. I. Krupa, G. Mikova, and A. S. Luyt, Polypropylene as a potential matrix for the creation of shape stabilized phase change materials, Eur. Polym. J. 43, 895 (2007) https://doi.org/10.1016/j.eurpolymj.2006.12.019
  26. A. Genovese, G. Amarasinghe, M. Glewis, D. Mainwaring, and R.A. Shanks, Crystallisation, melting, recrystallisation and polymorphism of n-eicosane for application as a phase change material, Thermochim. Acta 443, 235 (2006) https://doi.org/10.1016/j.tca.2006.02.008
  27. H. Ulrich, Introduction to industrial polymers. 2nd ed. Munich: Hanser, p.128 (1993)