• 제목/요약/키워드: thermal adhesion method

검색결과 109건 처리시간 0.03초

Highly Laminated Electrospun ZnO Nanofibrous Film on the Transparent Conducting Oxide for Photovoltaic Device

  • Kim, Jinsoo;Yoon, Sanghoon;Yoo, Jung-Keun;Kim, Jongsoon;Kim, Haegyeom;Kang, Kisuk
    • Journal of Electrochemical Science and Technology
    • /
    • 제3권2호
    • /
    • pp.68-71
    • /
    • 2012
  • The electrospinning technique is a revolutionary template-catalyst-free method that can generate 1D nanostructure with the tunability and the potential for the mass production. This approach received a great deal of attention due to its ability to give direct pathways for electrical current and has been utilized in various electronic applications. However, the delamination of inorganic electrospun film has prevented the intense utilization due to the thermal expansion/contraction during the calcination. In this study, we propose an electrical grounding method for transparent conducting oxide and electrospun nanowires to enhance the adhesion after the calcination. Then, we examined the potential of the technique on ZnO based dye-sensitized solar cells.

New Structure of Rigid Spacers for Tight Bonding of Two Plastic Substrates in Plastic LCD

  • Choi, Hong;Jang, Se-Jin;Bae, Ji-Hong;Choi, Yoon-Seuk;Kim, Sang-Il;Shin, Sung-Sik;Kim, Jae-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.352-355
    • /
    • 2007
  • We have developed tight bonding of plastic LCD with new rigid spacer. For tight bonding of two plastic substrates, we designed structures to collect UV or thermal epoxy placed on the top of rigid spacer spontaneously by capillary effect. We confirmed that tight bonded plastic LCD has a good adhesion without induced defects and a high mechanical stability against the various external deformations. This method can be applicable to the fabrication of large plastic LCDs using stamping process.

  • PDF

플립칩 패키지에서 UBM 및 IMC 층의 형상 모델링 (Solid Modeling of UBM and IMC Layers in Flip Chip Packages)

  • 신기훈;김주한
    • 한국공작기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.181-186
    • /
    • 2007
  • UBM (Under Bump Metallurgy) of flip chip assemblies consists of several layers such as the solder wetting, the diffusion barrier, and the adhesion layers. In addition, IMC layers are formed between the solder wetting layers (e.g. Cu, Ni) and the solder. The primary failure mechanism of the solder joints in flip chips is widely known as the fatigue failure caused by thermal fatigues or electromigration damages. Sometimes, the premature brittle failure occurs in the IMC layers. However, these phenomena have thus far been viewed from only experimental investigations. In this sense, this paper presents a method for solid modeling of IMC layers in flip chip assemblies, thus providing a pre-processing tool for finite element analysis to simulate the IMC failure mechanism. The proposed modeling method is CSG-based and can also be applied to the modeling of UBM structure in flip chip assemblies. This is done by performing Boolean operations according to the actual sequences of fabrication processes

플라즈마 표면처리 방법을 이용한 웨이퍼레벨 몰딩 공정용 기판의 최적 이형조건 도출 (Study on the Optimal Release Condition of Wafer Level Molding Process using Plasma Surface Treatment Method)

  • 연시모;박진호;이낙규;박석희;이혜진
    • 융복합기술연구소 논문집
    • /
    • 제5권1호
    • /
    • pp.13-17
    • /
    • 2015
  • In wafer level molding progress, the thermal releasing failure phenomenon is shown up as the important problem. This phenomenon can cause the problem including the warpage, crack of the molded wafer. The thermal releasing failure is due to the insufficiency of adhesion strength degradation of the molding tape. To solve this problem, we studied experimental method increasing the release property of the molding tape through the plasma surface treatment on the wafer substrate. In this research, the vacuum plasma treatment system is used for release property improvement of the molding tape and controls the operating condition of the hydrophilic($O_2$, 100kW, 10min) and hydrophobic($C_2F_6$, 200kW, 10min). In order to perform the peeling test for measuring the releasing force precisely, we remodel the micro scale material property evaluation system developed by Korea institute of industrial technology. In case of hydrophilic surface treatment on the wafer substrate, we can figure out the releasing property of molding tape increase. In order to grasp the effect that it reaches to the release property increase when repeating the hydrophilic treatment, we make an experiment with twice treatment and get the result to increase about 12%. We find out the hydrophilic surface treatment method using plasma can improve releasing property of molding tape in the wafer level molding process.

Increased Osteoblast Adhesion Densities on High Surface Roughness and on High Density of Pores in NiTi Surfaces

  • 임연민;강동우;김연욱;남태현
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 추계학술발표대회
    • /
    • pp.39.1-39.1
    • /
    • 2009
  • NiTi alloy is widely used innumerous biomedical applications (orthodontics, cardiovascular, orthopaedics, etc.) for its distinctive thermomechanical and mechanical properties such as shape memory effect, super elasticity, low elastic modulus and high damping capacity. However, NiTi alloy is still a controversial biomaterial because of its high Ni content which can trigger the risk of allergy and adverse reactions when Ni ion releases into the human body. In order to improve the corrosion resistance of the TiNi alloy and suppress the release of Ni ions, many surface modification techniques have been employed in previous literature such as thermal oxidation, laser surface treatment, sol-gel method, anodic oxidation and electrochemical methods. In this paper, the NiTi was electrochemically etched in various electrolytes to modify surface. The microstructure, element distribution, phase composition and roughness of the surface were investigatedby scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry(EDS), X-ray diffractometry (XRD) and atomic force microscopy (AFM). Systematic controlling of nano and submicron surface features was achieved by altered density of hydro fluidic acid in etchant solution. Nanoscale surface topography, such as, pore density, pore width, pore height, surface roughness and surface tension were extensively analyzed as systematical variables.Importantly, bone forming cell, osteoblast adhesion was increased in high density of hydro fluidic treated surface structures, i.e., in greater nanoscale surface roughness and in high surface areas through increasing pore densities.All results delineate the importance of surface topography parameter (pores) inNiTi to increase the biocompatibility of NiTi in identical chemistry which is crucial factor for determining biomaterials.

  • PDF

Influence of Initial Molar Ratios on the Performance of Low Molar Ratio Urea-Formaldehyde Resin Adhesives

  • LUBIS, Muhammad Adly Rahandi;PARK, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • 제48권2호
    • /
    • pp.136-153
    • /
    • 2020
  • In this paper, the influence of initial formaldehyde/urea (F/U) molar ratios on the performance of low molar ratio (1.0) urea-formaldehyde (UF) resin adhesives has been investigated. Two initial F/U molar ratios, i.e., the first and second initial molar ratios were used for the alkaline addition reaction. Three levels of the first initial F/U molar ratios (2.0, 3.0, and 4.0) and two levels of the second initial molar ratios (2.0 and 1.7) were employed to prepare a total of six UF resins with an identical final molar ratio (1.0). The basis properties, functional groups, molecular weight, crystallinity, and thermal curing properties of the UF resins were characterized in detail. Higher levels (3.0 and 4.0) of the first initial F/U molar ratio provided the UF resins with better properties (non-volatile solids content, viscosity, gelation time, pH, and specific gravity) than those of the resins prepared with the conventional level F/U molar ratio of 2.0. Statistical analysis suggested that combining the first and second initial molar ratio of 4.0 with 1.7 would result in UF resins with greater adhesion strength and lower formaldehyde emission than those of the resins prepared with other molar ratios. The results showed that higher levels of the first initial molar ratio resulted in a more branched structure, as indicated by GPC, FTIR, DSC, XRD, and greater adhesion strength than those of the other UF resins with an identical final molar ratio of 1.0.

전기화학 공정을 이용한 질화규소 기판 상의 금속 전극 형성에 관한 연구 (Formation of Metal Electrode on Si3N4 Substrate by Electrochemical Technique)

  • 신성철;김지원;권세훈;임재홍
    • 한국표면공학회지
    • /
    • 제49권6호
    • /
    • pp.530-538
    • /
    • 2016
  • There is a close relationship between the performance and the heat generation of the electronic device. Heat generation causes a significant degradation of the durability and/or efficiency of the device. It is necessary to have an effective method to release the generated heat. Based on demands of the printed circuit board (PCB) manufacturing, it is necessary to develop a robust and reliable plating technique for substrates with high thermal conductivity, such as alumina ($Al_2O_3$), aluminium nitride (AlN), and silicon nitride ($Si_3N_4$). In this study, the plating of metal layers on an insulating silicon nitride ($Si_3N_4$) ceramic substrate was developed. We formed a Pd-$TiO_2$ adhesion layer and used APTES(3-Aminopropyltriethoxysilane) to form OH groups on the surface and adhere the metal layer on the insulating $Si_3N_4$ substrate. We used an electroless Ni plating without sensitization/activation process, as Pd particles were nucleated on the $TiO_2$ layer. The electrical resistivity of Ni and Cu layers is $7.27{\times}10^{-5}$ and $1.32{\times}10^{-6}ohm-cm$ by 4 point prober, respectively. The adhesion strength is 2.506 N by scratch test.

고강력 직물의 열융착 라미네이팅을 통한 충격 완화용 에어쿠션 소재로의 적용 가능성 검토 연구 (Study on the Applicability of the Air Cushion Material for Impact Relief through Thermal Bonding of High Strength Fabrics)

  • 김지연;김훈민;민문홍
    • 한국염색가공학회지
    • /
    • 제32권3호
    • /
    • pp.176-183
    • /
    • 2020
  • In order to study wearable air cushion materials capable of responding to massive impact in high-altitude fall situation, high tenacity woven fabrics were bonded by heat only depending on various type of thermoplastic films and then mechanical properties were measured. Tensile strength, elongation, and 100% modulus measurement results for 4 types of films show that TPU-2 has higher impact resistance and easier expansion than PET-1. After thermal bonding, the combination with the highest tensile strength was a material with a TPU-2 film for nylon and a PET-2 film for PET, so there was a difference by type of fabric. The tear strength of the bonded materials were increased compared to the fabric alone, which shows that durability against damage such as tearing can be obtained through film adhesion. All of the peel strengths exceeded the values required by automobile airbags by about 5 times, and the TPU-2 bonded fabric showed the highest value. The air permeability was 0 L/dm2 /min. For both the film and the bonded material, which means tightness between the fabric and the film through thermal bonding. It is expected to be applied as a wearable air cushion material by achieving a level of mechanical properties similar to or superior to that of automobile airbags through the method of bonding film and fabric by thermal bonding.

자외선 경화형 지방족 에폭시 아크릴레이트의 합성 및 특성분석 (Synthesis and Characterization of UV-curable Aliphatic Epoxy Acrylate)

  • 김영철;이병훈
    • 접착 및 계면
    • /
    • 제10권4호
    • /
    • pp.191-198
    • /
    • 2009
  • 지방족 에폭시 수지인 glycerol diglycidyl ether (GDE)에 단관능성 아크릴 수지인 2-carboxyethyl acrylate (2-CEA) 또는 2-hydroxyethyl acrylate (2-HEA)를 반응시켜 지방족 에폭시 아크릴레이트를 제조하였다. FT-IR, $^1H$-NMR, 그리고 $^{13}C$-NMR를 사용하여 생성물을 확인하였고, 수율은 prep-LC를 사용하여 얻었다. 생성물의 자외선 경화거동은 photo-DSC를 사용하였고, 열경화 반응성은 DSC를 사용하여 얻었다. 2-CEA의 반응성이 2-HEA보다 월등히 높음을 알 수 있었고, 2-CEA로부터 제조한 지방족 에폭시 아크릴레이트(GEA-C)의 수율은 약 83%이었다. 촉매를 제거한 GEA-C 생성물의 자외선 경화반응($T_{max}$)은 약 10 s로 빠르게 진행되었다. GEA-C는 투명하고, 내열성이 우수하며 저점도를 갖고 있음을 확인할 수 있었다. ${\Delta}E^*$는 2.51, 점도는 192 cps, 5% 중량감소 때의 온도는 $299^{\circ}C$이었다. Kissinger와 Ozawa-Flynn-Wall 식으로 얻은 GEA-C의 열경화 반응의 활성화에너지($E_a$)는 91~92 kJ/mol이었다.

  • PDF

3D 프린터 빌드시트용 무용제 UV 경화형 아크릴 점착제의 제조 (Solvent-free UV-curable Acrylic Adhesives for 3D printer build sheet)

  • 이배화;박동협;김병직
    • 접착 및 계면
    • /
    • 제21권3호
    • /
    • pp.93-100
    • /
    • 2020
  • 적층제조법 기반의 3D 프린팅 기술은 사용자가 원하는 상품을 출력하여 제공하지만 고온의 사용 환경 및 용융된 필라멘트 수지의 냉각 과정에서 변동적 수축현상이 발생하여 상품의 출력편차를 야기한다. 본 연구에서는 출력물의 들뜸과 뒤틀림을 방지하고 정밀한 형상의 고품질 출력물을 제작하기 위하여 3D 프린터 빌드시트용 아크릴 점착제를 연구하였다. 고온에서 점착특성이 유지되고 점착제로부터 출력물의 안착과 원활한 탈거를 위해 부착성과 강인성이 우수하고 높은 유리전이온도를 갖는 4-acryloylmorpholine (ACMO)를 첨가하여 무용제 타입의 점착제 조성물을 설계하였다. 단량체의 후첨가방식을 사용하여 두 단계를 통해 아크릴 조성물을 합성하였고, 합성된 조성물로 코팅한 점착제 필름을 다각도에서 분석하였다. 그 결과 제조된 점착제는 높은 유리전이온도를 보이고 열처리 전/후에 따른 박리강도 차이가 보이지 않았으며, 유변학적 물성 분석을 통해 점착제의 우수한 접착력 뿐만 아니라 변형 없이 탈착이 가능한 물성을 갖음을 확인하였다. 본 연구에서 제조된 점착제를 3D 프린터의 빌드시트로 활용하였을 때 안착성 및 작업성이 양호하고 출력편차가 적은 출력물을 얻었다. 기존 판매중인 빌드시트와 비교하였을 때 본 연구에서 제조한 점착제 위에서는 출력물이 원활하게 탈거가 가능하기 때문에 FDM 방식 3D프린터의 사용자들에게 작업 편의성을 제공할 수 있을 것으로 기대된다.