DOI QR코드

DOI QR Code

Highly Laminated Electrospun ZnO Nanofibrous Film on the Transparent Conducting Oxide for Photovoltaic Device

  • Kim, Jinsoo (Department of Materials Science and Engineering, Seoul National University) ;
  • Yoon, Sanghoon (Department of Materials Science and Engineering, KAIST) ;
  • Yoo, Jung-Keun (Department of Materials Science and Engineering, KAIST) ;
  • Kim, Jongsoon (Department of Materials Science and Engineering, Seoul National University) ;
  • Kim, Haegyeom (Department of Materials Science and Engineering, Seoul National University) ;
  • Kang, Kisuk (Department of Materials Science and Engineering, Seoul National University)
  • Received : 2012.05.09
  • Accepted : 2012.06.08
  • Published : 2012.06.30

Abstract

The electrospinning technique is a revolutionary template-catalyst-free method that can generate 1D nanostructure with the tunability and the potential for the mass production. This approach received a great deal of attention due to its ability to give direct pathways for electrical current and has been utilized in various electronic applications. However, the delamination of inorganic electrospun film has prevented the intense utilization due to the thermal expansion/contraction during the calcination. In this study, we propose an electrical grounding method for transparent conducting oxide and electrospun nanowires to enhance the adhesion after the calcination. Then, we examined the potential of the technique on ZnO based dye-sensitized solar cells.

Keywords

References

  1. A. N. Shipway, E. Katz, and I. Willner, ChemPhysChem, 1, 1 (2000). https://doi.org/10.1002/1439-7641(20000804)1:1<1::AID-CPHC1>3.0.CO;2-Y
  2. Y. Cui, Q. Wei, H. Park, and C. M. Lieber, Science, 293, 5533 (2001).
  3. Z. Liu, R. Ma, M. Osada, N. Iyi, Y. Ebina, K. Takada, and T. Sasaki, J. Am. Chem. Soc., 128 , 14 (2006). https://doi.org/10.1021/ja055483r
  4. P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H. J. Choi, Adv. Funct. Mater., 12, 5 (2002).
  5. J. X. Ding, J. A. Zapien, W. W. Chen, Y. Lifshitz, S. T. Lee, and X. M. Meng, Appl. Phys. Lett., 85, 12 (2004).
  6. T. Thurn-Albrecht, J. Schotter, G. A. Kastle, N. Emley, T. Shibauchi, L. Krusin-Elbaum, K. Guarini, C. T. Black, M. T. Tuominen, and T. P. Russell, Science, 290, 5499 (2000).
  7. D. Li and Y. Xia, Adv. Mater., 16, 14 (2004).
  8. A. Greiner and J. H. Wendorff, Angew. Chem.-Int. Edit., 46, 30 (2007).
  9. S. W. Lee, H. J. Lee, J. H. Choi, W. G. Koh, J. M. Myoung, J. H. Hur, J. J. Park, J. H. Cho, and U. Jeong, Nano Lett., 10, 1 (2010). https://doi.org/10.1021/nl900550j
  10. D. Li and Y. Xia, Nano Lett., 4, 5 (2004). https://doi.org/10.1021/nl034590l
  11. Z. Sun, E. Zussman, A. L. Yarin, J. H. Wendorff, and A. Greiner, Adv. Mater., 15, 22 (2003).
  12. I. D. Kim, J. M. Hong, B. H. Lee, D. Y. Kim, E. K. Jeon, D. K. Choi, and D. J. Yang, Appl. Phys. Lett., 91, 16 (2007).
  13. R. Zhu, C. Y. Jiang, X. Z. Liu, B. Liu, A. Kumar, and S. Ramakrishna, Appl. Phys. Lett., 93, 1 (2008).
  14. K. Fujihara, A. Kumar, R. Jose, S. Ramakrishna, and S. Uchida, Nanotechnology, 18, 36 (2007).
  15. W. Zhang, R. Zhu, X. Liu, B. Liu, and S. Ramakrishna, Appl. Phys. Lett., 95, 4 (2009).
  16. A. F. Lotus, Y. C. Kang, J. I. Walker, R. D. Ramsier, and G. G. Chase, Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater., 166, 1 (2009).
  17. E. Guillen, F. Casanueva, J. A. Anta, A. Vega-Poot, G. Oskam, R. Alcantara, C. Fernandez-Lorenzo, and J. Martin-Calleja, J. Photochem. Photobiol. A-Chem., 200, 2-3 (2008).
  18. T. P. Chou, Q. Zhang, G. E. Fryxell, and G. Cao, Adv. Mater., 19, 18), (2007).
  19. Q. Zhang, C. S. Dandeneau, X. Zhou, and C. Cao, Adv. Mater., 21, 41 (2009).

Cited by

  1. Mobility-Modulation Field Effect Transistor Based on Electrospun Aluminum Doped Zinc Oxide Nanowires vol.5, pp.3, 2016, https://doi.org/10.1149/2.0141603jss