• 제목/요약/키워드: the static world

검색결과 194건 처리시간 0.025초

등가정하중을 이용한 유연다물체 동역학계의 구조최적설계 (Optimization of Flexible Multibody Dynamic Systems Using Equivalent Static Load Method)

  • 강병수;박경진
    • 대한기계학회논문집A
    • /
    • 제28권1호
    • /
    • pp.48-54
    • /
    • 2004
  • Generally, structural optimization is carried out based on external static loads. All forces have dynamic characteristics in the real world. Mathematical optimization with dynamic loads is extremely difficult in a large-scale problem due to the behaviors in the time domain. In practical applications, it is customary to transform the dynamic loads into static loads by dynamic factors, design codes, and etc. But the optimization results with the unreasonably transformed loads cannot give us good solutions. Recently, a systematic transformation has been proposed as an engineering algorithm. Equivalent static loads are made to generate the same displacement field as the one from dynamic loads at each time step of dynamic analysis. Thus, many load cases are used as the multiple loading conditions which are not costly to include in modem structural optimization. In this research, the proposed algorithm is applied to the optimization of flexible multibody dynamic systems. The equivalent static load is derived from the equations of motion of a flexible multibody dynamic system. A few examples that have been solved before are solved to be compared with the results from the proposed algorithm.

The Macroeconomic Production Model in Business Environment - Analying with a Static and Dynamic Equations

  • Donghae LEE
    • Asian Journal of Business Environment
    • /
    • 제14권1호
    • /
    • pp.23-30
    • /
    • 2024
  • Purpose: The purpose of this research is to explore the macroeconomic model through both static and dynamic equations. The primary objective of this study is to investigate the variations in the elasticity of substitution across changing economic variables within the framework of the Allen-Uzawa production functions. Research, design, data and methodology: The data were drawn from the World Bank's annual central statistical office database from 2010 to 2021 in the United States of America. The level of expenditures and of the public finance sector, macroeconomic data like output, inflation rates, and labor are examined. Results: This study demonstrates the interaction of two equations, clarifying that the macroeconomic model is practical to determining the stability of both static and dynamic equation systems analytically. The Allen-Uzawa equations allow for the verification of macroeconomic model properties, and study results demonstrate an increase in the range of capital uses as a form of mechanization. A constant elasticity of substitution function is derived from the macroeconomic variables. Conclusion: The macroeconomic model, though the analysis of the static and dynamic Allen - Uzawa model, not only facilitates the examination of long-term trends in crucial endogenous variables but also overcomes challenges commonly associated with other mathematical methods. Overall, the analysis promotes economic growth, investment, and employment. The levels of expenditures and the public finance sector, along with macroeconomic data such as output, inflation rates, and labor, are examined.

동하중에서 변환된 등가정하중에 의한 최적화 방법의 수학적 고찰 (Mathematical Proof for Structural Optimization with Equivalent Static Loads Transformed from Dynamic Loads)

  • 박경진;강병수
    • 대한기계학회논문집A
    • /
    • 제27권2호
    • /
    • pp.268-275
    • /
    • 2003
  • Generally, structural optimization is carried out based on external static loads. All forces have dynamic characteristics in the real world. Mathematical optimization with dynamic loads is extremely difficult in a large-scale problem due to the behaviors in the time domain. The dynamic loads are often transformed into static loads by dynamic factors, design codes, and etc. Therefore, the optimization results can give inaccurate solutions. Recently, a systematic transformation has been proposed as an engineering algorithm. Equivalent static loads are made to generate the same displacement field as the one from dynamic loads at each time step of dynamic analysis. Thus, many load cases are used as the multiple leading conditions which are not costly to include in modern structural optimization. In this research, it is mathematically proved that the solution of the algorithm satisfies the Karush-Kuhn-Tucker necessary condition. At first, the solution of the new algorithm is mathematically obtained. Using the termination criteria, it is proved that the solution satisfies the Karush-Kuhn-Tucker necessary condition of the original dynamic response optimization problem. The application of the algorithm is discussed.

동하중을 받는 구조물의 동적특성에 관한 설계 관점에서의 고찰 (An Investigation of Dynamic Characteristics of Structures Subjected to Dynamic Load from the Viewpoint of Design)

  • 이현아;김용일;강병수;김주성;박경진
    • 대한기계학회논문집A
    • /
    • 제30권10호
    • /
    • pp.1194-1201
    • /
    • 2006
  • All the loads in the real world are dynamic loads and structural optimization under dynamic loads is very difficult. Thus the dynamic loads are often transformed to static loads by dynamic factors, which are believed equivalent to the dynamic loads. However, due to the difference of load characteristics, there can be considerable differences between the results from static and dynamic analyses. When the natural frequency of a structure is high, the dynamic analysis result is similar to that of static analysis due to the small inertia effect on the behavior of the structure. However, if the natural frequency of the structure is low, the inertia effect should not be ignored. Then, the behavior of the dynamic system is different from that of the static system. The difference of the two cases can be explained from the relationship between the homogeneous and the particular solutions of the differential equation that governs the behavior of the structure. Through various examples, the difference between the dynamic analysis and the static analysis are shown. Also dynamic response optimization results are compared with the results with static loads transformed from dynamic loads by dynamic factors, which show the necessity of the design considering dynamic loads.

마그네슘 합금 판재의 정적-내연적 성형해석에 관한 연구 (A Study on Static-Implicit Forming Analysis of the Magnesium Alloy Sheet)

  • 손영기;정동원
    • 한국기계가공학회지
    • /
    • 제7권4호
    • /
    • pp.44-49
    • /
    • 2008
  • The characteristic of magnesium alloy is the most light in utility metal, the effect of electromagnetic wave interception, excellent specific strength and absorptiveness of vibration. Although magnesium alloy with above characteristic is a subject matter which is suitable in world-wide tendency of electrical component frame, sheet magnesium alloy is difficult to process. Therefore, forming analysis of sheet magnesium alloy and applying warm-working to process are indispensable. Among Finite element method, the static implicit finite element method is applied effectively to analyze sheet magnesium alloy stamping process, which include the forming stage. In this study, it was focused on the crack, wrinkling and spring back on sheet magnesium alloy stamping by the static implicit analysis. According to this study, the result of simulation will give engineers good information to access the forming technique on sheet magnesium alloy. And its application is being increased especially in the production of electrical component frame for the cost reduction, saving of defective ratio, and improvement of Productivity.

  • PDF

Static Analysis Tools Against Cross-site Scripting Vulnerabilities in Web Applications : An Analysis

  • Talib, Nurul Atiqah Abu;Doh, Kyung-Goo
    • 한국소프트웨어감정평가학회 논문지
    • /
    • 제17권2호
    • /
    • pp.125-142
    • /
    • 2021
  • Reports of rampant cross-site scripting (XSS) vulnerabilities raise growing concerns on the effectiveness of current Static Analysis Security Testing (SAST) tools as an internet security device. Attentive to these concerns, this study aims to examine seven open-source SAST tools in order to account for their capabilities in detecting XSS vulnerabilities in PHP applications and to determine their performance in terms of effectiveness and analysis runtime. The representative tools - categorized as either text-based or graph-based analysis tools - were all test-run using real-world PHP applications with known XSS vulnerabilities. The collected vulnerability detection reports of each tool were analyzed with the aid of PhpStorm's data flow analyzer. It is observed that the detection rates of the tools calculated from the total vulnerabilities in the applications can be as high as 0.968 and as low as 0.006. Furthermore, the tools took an average of less than a minute to complete an analysis. Notably, their runtime is independent of their analysis type.

공압서보밸브 KS규격 정립에 관한 연구 (A Study of Korean (Industrial) Standards for Pneumatic Servo Valve)

  • 김동수;이원희;최병오
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1231-1234
    • /
    • 2003
  • Pneumatic servo valve which is widely applied in industrial world is advanced technology compounded with electric, electronic and machine. And It is consist of Linear Force Motor. Spool Commutation Mechanism and Microprocessor. In this study, we accomplished test method of Linear Force motor test, Static characteristic test, Dynamic characteristic test for KS(Koran industrial standard) of Pneumatic servo valve. we accomplished study about the main item of Static characteristic test which is related to unload flow characteristic test. And Dynamic characteristic test was step input test and frequency response test. Specially about frequency response test, There was a difficulty resulting from the time delay problem caused by the basic compressibility of air. In order to solve the problem in this study. we proposed two methods. First, displacement of the servo valve spool was directly measured by using a laser sensor. Second, method of calculating control flow by measuring pressure and temperature of chamber.

  • PDF

Influence of dynamic loading induced by free fall ball on high-performance concrete slabs with different steel fiber contents

  • Al kulabi, Ahmed K.;Al zahid, Ali A.
    • Structural Monitoring and Maintenance
    • /
    • 제6권1호
    • /
    • pp.19-32
    • /
    • 2019
  • One way to provide safe buildings and to protect tenants from the terrorist attacks that have been increasing in the world is to study the behavior of buildings members after being exposed to dynamic loads. Buildings behaviour after being exposed to attacks inspired researchers all around the world to investigate the effect of impact loads on buildings members like slabs and to deeply study the properties of High Performance Concrete. HPC is well-known in its high performance and resistance to dynamic loads when it is compared with normal weight concrete. Therefore, the aim of this paper is finding out the impact of dynamic loads on RPC slabs' flexural capacity, serviceability loads, and failure type. For that purpose and to get answers for these questions, three concrete slabs with 0.5, 1, and 2% steel fiber contents were experimentally tested. The tests results showed that the content of steel fiber plays the key role in specifying the static capacity of concrete slabs after being dynamically loaded, and increasing the content of steel fiber led to improving the static loading capacity, decreased the cracks numbers and widths at the same time, and provided a safer environment for the buildings residents.

Simulating and evaluating regolith propagation effects during drilling in low gravity environments

  • Suermann, Patrick C.;Patel, Hriday H.;Sauter, Luke D.
    • Advances in Computational Design
    • /
    • 제4권2호
    • /
    • pp.141-153
    • /
    • 2019
  • This research is comprised of virtually simulating behavior while experiencing low gravity effects in advance of real world testing in low gravity aboard Zero Gravity Corporation's (Zero-G) research aircraft (727-200F). The experiment simulated a drill rig penetrating a regolith simulant. Regolith is a layer of loose, heterogeneous superficial deposits covering solid rock on surfaces of the Earth' moon, asteroids and Mars. The behavior and propagation of space debris when drilled in low gravity was tested through simulations and visualization in a leading dynamic simulation software as well as discrete element modeling software and in preparation for comparing to real world results from flying the experiment aboard Zero-G. The study of outer space regolith could lead to deeper scientific knowledge of extra-terrestrial surfaces, which could lead us to breakthroughs with respect to space mining or in-situ resource utilization (ISRU). These studies aimed to test and evaluate the drilling process in low to zero gravity environments and to determine static stress analysis on the drill when tested in low gravity environments. These tests and simulations were conducted by a team from Texas A&M University's Department of Construction Science, the United States Air Force Academy's Department of Astronautical Engineering, and Crow Industries

Seismic performance of low-rise reinforced concrete moment frames under carbonation corrosion

  • Vaezi, Hossein;Karimi, Amir;Shayanfar, Mohsenali;Safiey, Amir
    • Earthquakes and Structures
    • /
    • 제20권2호
    • /
    • pp.215-224
    • /
    • 2021
  • The carbon dioxide present in the atmosphere is one of the main reasons for the corrosion of bridges, buildings, tunnels, and other reinforced concrete (RC) structures in most industrialized countries. With the growing use of fossil fuels in the world since the Industrial Revolution, the amount of carbon dioxide in urban and industrial areas of the world has grown significantly, which increases the chance of corrosion caused by carbonation. The process of corrosion leads to a change in mechanical properties of rebars and concrete, and consequently, detrimentally impacting load-bearing capacity and seismic behavior of RC structures. Neglecting this phenomenon can trigger misleading results in the form of underestimating the seismic performance metrics. Therefore, studying the carbonation corrosion influence on the seismic behavior of RC structures in urban and industrial areas is of great significance. In this study, a 2D modern RC moment frame is developed to study and assess the effect of carbonation corrosion, in 5-year intervals, for a 50 years lifetime under two different environmental conditions. This is achieved using the nonlinear static and incremental dynamic analysis (IDA) to evaluate the reinforcement corrosion effects. The reduction in the seismic capacity and performance of the reinforced concrete frame, as well as the collapse probability over the lifetime for different corrosion scenarios, is examined through the capacity curves obtained from nonlinear static analysis and the fragility curves obtained from IDA.