• Title/Summary/Keyword: the least-squares method

Search Result 1,466, Processing Time 0.029 seconds

Gas-liquid interface treatment in underwater explosion problem using moving least squares-smoothed particle hydrodynamics

  • Hashimoto, Gaku;Noguchi, Hirohisa
    • Interaction and multiscale mechanics
    • /
    • v.1 no.2
    • /
    • pp.251-278
    • /
    • 2008
  • In this study, we investigate the discontinuous-derivative treatment at the gas-liquid interface in underwater explosion (UNDEX) problems by using the Moving Least Squares-Smoothed Particle Hydrodynamics (MLS-SPH) method, which is known as one of the particle methods suitable for problems where large deformation and inhomogeneity occur in the whole domain. Because the numerical oscillation of pressure arises from derivative discontinuity in the UNDEX analysis using the standard SPH method, the MLS shape function with Discontinuous-derivative Basis Function (DBF) that is able to represent the derivative discontinuity of field function is utilized in the MLS-SPH formulation in order to suppress the nonphysical pressure oscillation. The effectiveness of the MLS-SPH with DBF is demonstrated in comparison with the standard SPH and conventional MLS-SPH though a shock tube problem and benchmark standard problems of UNDEX of a trinitrotoluene (TNT) charge.

Visual Servo Navigation of a Mobile Robot Using Nonlinear Least Squares Optimization for Large Residual (비선형 최소 자승법을 이용한 이동 로봇의 비주얼 서보 네비게이션)

  • Kim, Gon-Woo;Nam, Kyung-Tae;Lee, Sang-Moo;Shon, Woong-Hee
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.4
    • /
    • pp.327-333
    • /
    • 2007
  • We propose a navigation algorithm using image-based visual servoing utilizing a fixed camera. We define the mobile robot navigation problem as an unconstrained optimization problem to minimize the image error between the goal position and the position of a mobile robot. The residual function which is the image error between the position of a mobile robot and the goal position is generally large for this navigation problem. So, this navigation problem can be considered as the nonlinear least squares problem for the large residual case. For large residual, we propose a method to find the second-order term using the secant approximation method. The performance was evaluated using the simulation.

  • PDF

FINITE ELEMENT APPROXIMATION OF THE DISCRETE FIRST-ORDER SYSTEM LEAST SQUARES FOR ELLIPTIC PROBLEMS

  • SHIN, Byeong-Chun
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.3
    • /
    • pp.563-578
    • /
    • 2005
  • In [Z. Cai and B. C. Shin, SIAM J. Numer. Anal. 40 (2002), 307-318], we developed the discrete first-order system least squares method for the second-order elliptic boundary value problem by directly approximating $H(div){\cap}H(curl)-type$ space based on the Helmholtz decomposition. Under general assumptions, error estimates were established in the $L^2\;and\;H^1$ norms for the vector and scalar variables, respectively. Such error estimates are optimal with respect to the required regularity of the solution. In this paper, we study solution methods for solving the system of linear equations arising from the discretization of variational formulation which possesses discrete biharmonic term and focus on numerical results including the performances of multigrid preconditioners and the finite element accuracy.

Least Squares Velocity Estimation of a Mobile Robot Using a Regular Polygonal Array of Optical Mice (정다각형 배열의 광 마우스를 이용한 이동 로봇의 최소 자승 속도 추정)

  • Kim, Sung-Bok;Jeong, Il-Hwa;Lee, Sang-Hyup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.10
    • /
    • pp.978-982
    • /
    • 2007
  • This paper presents the velocity estimation of a mobile robot using a regular polygonal array of optical mice that are installed at the bottom of a mobile robot. First, the basic principle of the proposed velocity estimation method is explained. Second, the velocity kinematics from a mobile robot to an array of optical mice is derived as an overdetermined linear system. Third, for a given set of optical mouse readings, the mobile robot velocity is estimated based on the least squares solution to the obtained system. Finally, simulation results are given to demonstrate the validity of the proposed velocity estimation method.

A Moving Least Squares weighting function for the Element-free Galerkin Method which almost fulfills essential boundary conditions

  • Most, Thomas;Bucher, Christian
    • Structural Engineering and Mechanics
    • /
    • v.21 no.3
    • /
    • pp.315-332
    • /
    • 2005
  • The Element-free Galerkin Method has become a very popular tool for the simulation of mechanical problems with moving boundaries. The internally applied Moving Least Squares interpolation uses in general Gaussian or cubic weighting functions and has compact support. Due to the approximative character of this interpolation the obtained shape functions do not fulfill the interpolation conditions, which causes additional numerical effort for the application of the boundary conditions. In this paper a new weighting function is presented, which was designed for meshless shape functions to fulfill these essential conditions with very high accuracy without any additional effort. Furthermore this interpolation gives much more stable results for varying size of the influence radius and for strongly distorted nodal arrangements than existing weighting function types.

DEVELOPMENT OF THE HANSEL-SPITTEL CONSTITUTIVE MODEL GAZED FROM A PROBABILISTIC PERSPECTIVE

  • LEE, KYUNGHOON;KIM, JI HOON;KANG, BEOM-SOO
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.21 no.3
    • /
    • pp.155-165
    • /
    • 2017
  • The Hansel-Spittel constitutive model requires a total of nine parameters for flow stress prediction. Typically, the parameters are estimated by least squares methods for given tensile test measurements from a deterministic perspective. In this research we took a different approach, a probabilistic viewpoint, to see through the development of the Hansel-Spittel constitutive model. This perspective change showed that deterministic least squares methods are closely related to statistical maximum likelihood methods via Gaussian noise assumption. More intriguingly, this perspective shift revealed that the Hansel-Spittel constitutive model may leave out deterministic trends in residuals despite nearly perfect agreement with measurements. With tensile test measurements of AA1070 aluminum alloy, we demonstrated this deficiency of the Hansel-Spittel constitutive model, suggesting room for improvement.

A Study on Internet Traffic Forecasting by Combined Forecasts (결합예측 방법을 이용한 인터넷 트래픽 수요 예측 연구)

  • Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.6
    • /
    • pp.1235-1243
    • /
    • 2015
  • Increased data volume in the ICT area has increased the importance of forecasting accuracy for internet traffic. Forecasting results may have paper plans for traffic management and control. In this paper, we propose combined forecasts based on several time series models such as Seasonal ARIMA and Taylor's adjusted Holt-Winters and Fractional ARIMA(FARIMA). In combined forecasting methods, we use simple-combined method, MSE based method (Armstrong, 2001), Ordinary Least Squares (OLS) method and Equality Restricted Least Squares (ERLS) method. The results show that the Seasonal ARIMA model outperforms in 3 hours ahead forecasts and that combined forecasts outperform in longer periods.

Combining Ridge Regression and Latent Variable Regression

  • Kim, Jong-Duk
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.1
    • /
    • pp.51-61
    • /
    • 2007
  • Ridge regression (RR), principal component regression (PCR) and partial least squares regression (PLS) are among popular regression methods for collinear data. While RR adds a small quantity called ridge constant to the diagonal of X'X to stabilize the matrix inversion and regression coefficients, PCR and PLS use latent variables derived from original variables to circumvent the collinearity problem. One problem of PCR and PLS is that they are very sensitive to overfitting. A new regression method is presented by combining RR and PCR and PLS, respectively, in a unified manner. It is intended to provide better predictive ability and improved stability for regression models. A real-world data from NIR spectroscopy is used to investigate the performance of the newly developed regression method.

  • PDF

Design of Directional Couplers in Bilevel Microstrip Using the Least Squares Residual Method (최소자승법을 이용한 이중층 마이크로스트립 방향성 결합기의 설계)

  • 양기덕;김원기;이용민;나극환;신철재
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.2
    • /
    • pp.253-264
    • /
    • 1998
  • In this paper, a design method for directional couplers using bilevel microstrip substrates is proposed. This kind of broadside-coupled coupler provides large coupling factors and broadband characteristics which can not be provided by conventional edge-coupled couplers. Physical dimensions needed for design are obtained by numerical analysis of characteristic parameters of the coupler using the least squares residual method, a kind of variational method, and an eigenvalue problem analysis method. A 3[dB] directional coupler is designed by the proposed method at the center frequency of 1 GHz, built, and tested. The validation and accuracy of the method are confirmed by comparing the numerical results with the experimental results.

  • PDF

A Method for Estimation and Elimination of EGG Artifacts from Scalp EEG Using the Least Squares Acceleration Based Adaptive Digital Filter (최소 제곱 가속 기반의 적응 디지털 필터를 이용한 두피 뇌전도에서의 심전도 잡음 추정 및 제거)

  • Cho, Sung-Pil;Song, Mi-Hye;Park, Ho-Dong;Lee, Kyoung-Joung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.7
    • /
    • pp.1331-1338
    • /
    • 2007
  • A new method for detecting and eliminating the Electrocardiogram(ECG) artifact from the scalp Electroencephalogram(EEG) is proposed. Based on the single channel EEG, the proposed method consists of 4 procedures: emphasizing the R-wave of ECG artifact from EEG using the least squares acceleration(LSA) filter, detecting the R-wave from the LSA filtered EEG using the phase space method and R-R interval, generating the delayed impulse synchronized to the R-wave and elimination of the ECG artifacts based on the adaptive digital filter using the impulse and raw EEG. The performance of the proposed method was evaluated in the two separating parts of R-wave detection and, ECG estimation and elimination from EEG. In the R-wave detection, the proposed method showed the mean error rate of 6.285(%). In the ECG estimation and elimination using simulated and/or real EEG recordings, we found that the ECG artifacts were successfully estimated and eliminated in comparison with the conventional multi-channel techniques, in which independent component analysis and ensemble average method are used. From this we can conclude that the proposed method is useful for the detecting and eliminating the ECG artifact from single channel EEG and simple for ambulatory/portable EEG monitoring system.