• Title/Summary/Keyword: the high higher surface

Search Result 2,960, Processing Time 0.027 seconds

The Effect of Fines on the Property of High Yield Pulp (미세섬유(微細纖維)가 고수율(高收率)펄프의 지질(紙質)에 미치는 영향(影響))

  • Cho, Nam Seok
    • Journal of Korean Society of Forest Science
    • /
    • v.57 no.1
    • /
    • pp.14-19
    • /
    • 1982
  • Fines in high-yield sulfite pulp have much higher water retention value as compared with fines in Stone groundwood pulp. Therefore, they are apt to adhere partially or entirely onto the fiber surface during the paper making. This tendency is greatly enhance with decrease of the pretreated yield and increase of the water retention value of fines. Fines, which adhere onto the fiber surface in paper, contribute to the light scattering of the paper. Accordingly, the specific scattering coefficient of fines in high-yield sulfite pulp is considerably lower than that of fines in stone groundwood pulp, which hardly adhere onto the fiber surface. The fact that high-yield sulfite pulp is inferior to stone groundwood pulp in opacity is explained on the basis of the high degree of swelling of fined in addition to the softening of fiber fraction.

  • PDF

Microstructure and Mgnetic Properties of Electrodeposited Nanocrystalline Low-Nickel Permalloy (전착법으로 제조한 나노결정질 저Ni 퍼멀로이의 미세 조직과 자기적 특성)

  • 허영두;이흥렬;황태진;임태홍
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.6
    • /
    • pp.455-460
    • /
    • 2003
  • Microstructural and magnetic properties of nanocrystalline Fe-46 wt%Ni and Fe-36 wt%Ni alloys were investigated. Alloys were prepared by the electrodeposition process. The electrolytes were iron sulfate/nickel chloride-based and iron chloride/nickel sulfamate-based solutions. Fe-46 wt%Ni alloy was FCC structure with grain size of 10 nm, but FCC and BCC phases were found in Fe-36 wt%Ni alloy and its grain size was smaller. Effective permeability of Fe-36 wt%Ni alloy was higher than that of Fe-46 wt%Ni alloy in the high frequency range because of large electrical resistivity and small eddy current loss resulted from grain size decrease. Up to $300^{\circ}C$ of annealing temperature, grain growth of Fe-Ni alloys slowly occured. Conversely, annealing above $450^{\circ}C$ led to a drastic grain growth. In that case, effective permeability was decreased at the temperature lower than $300^{\circ}C$ but at $300^{\circ}C$ or higher effective permeability was increased. At the high frequency of 1 MHz, electrodeposited Fe-Ni alloys had higher effective permeability with an decrease in the grain size.

Effects of ta-C Coatings on Surface Characteristics of Dental Ni-Ti Files (치과용 Ni-Ti파일의 표면특성에 미치는 ta-C코팅효과)

  • Sun-Kyun Park;Han-Cheol Choe
    • Corrosion Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.368-376
    • /
    • 2023
  • Dental Ni-Ti files must ensure stability and resistance to fatigue fracture. DLC and ta-C were coated to remove defects on the surface and ensure stability, and the surface characteristics were investigated. When coated with DLC, it was black, and in case of ta-C coating, it was blue-black. Scratches, which are defects caused by mechanical processing, were formed on the surface of the un-coated Ni-Ti file from the end of the file along the direction of processing, with the Pro-file appearing in the vertical direction and the K-file appearing in the file direction. Scratches were reduced on the coated surface, and the surface roughness was greatly reduced after coating compared to before coating. The un-coated Ni-Ti file had the lowest hardness, the DLC-coated file had the highest hardness, and ta-C showed relatively high hardness. The elastic modulus of the DLC coating film was high, and the ta-C elastic modulus was low. The adhesion of the DLC coating film tended to be higher than that of ta-C, and the wear loss amount of DLC coating of taC was lower. The corrosion potential of the ta-C coating increased significantly, and the corrosion current density decreased.

On the Surface Moisture Availability Parameters to Estimate the Surface Evaporation (증발량 추정을 위한 지표면 가용 수분 계수)

  • Jin, Byoung-Hwa;Hwang, Soo-Jin
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.41-41
    • /
    • 1995
  • In order to discuss the differences among the SMP(Surface Moisture Availability Parameter), by previous researchers on the basis of their own theoretical and empirical background, we assessed the SMP according to the soil types and volumetric soil water contents. The results are as follows. There are differences among all the five SMAPs. There''s a tendency that the larger grain size, the higher value of parameters. And they divided into two groups for their value: one group has parameters with exponential function and the other with cosine and linear function. The maximum difference between the two groups appears when the volumetric soil water contents are 0.07$m^3m^{-3}$ for sand, 0.l1$m^3m^{-3}$ for loam, 0.12 for clay, and 0.13$m^3m^{-3}$ for silt loam. So, these differences must be considered when we estimate the surface evaporation rate. From field data, the paddy field soil around Junam reservoir is classified as a silt has high wetness, 0.56. So, the parameter obtained from the field measurement is much higher than that of Clapp and Hornberger(1978)''s Table. This study treated the SMP for a certain point of time in winter season. But if we measured the soil water contents continuously, we could obtain better time-dependent parameter.

The surface stress effects on the buckling analysis of porous microcomposite annular sandwich plate based on HSDT using Ritz method

  • Mohsen Emdadi;Mehdi Mohammadimehr;Borhan Rousta Navi
    • Computers and Concrete
    • /
    • v.32 no.5
    • /
    • pp.439-454
    • /
    • 2023
  • In this article, the surface stress effects on the buckling analysis of the annular sandwich plate is developed. The proposed plate is composed of two face layers made of carbon nanotubes (CNT) reinforced composite with assuming of fully bonded to functionally graded porous core. The generalized rule of the mixture is employed to predict the mechanical properties of the microcomposite sandwich plate. The derived potentials energy based on higher order shear deformation theory (HSDT) and modified couple stress theory (MCST) is solved by employing the Ritz method. An exact analytical solution is presented to calculate the critical buckling loads of the annular sandwich plate. The predicted results are validated by carrying out the comparison studies for the buckling analysis of annular plates with those obtained by other analytical and finite element methods. The effects of various parameters such as material length scale parameter, core thickness to total thickness ratio (hc/h), surface elastic constants based on surface stress effect, various boundary condition and porosity distributions, size of the internal pores (e0), Skempton coefficient and elastic foundation on the critical buckling load have been studied. The results can be served as benchmark data for future works and also in the design of materials science, injunction high-pressure micropipe connections, nanotechnology, and smart systems.

Measurements of Heat (Mass) Transfer Coefficient on the Surface of a Turbine Blade with n High Turning Angle Using Naphthalene Sublimation Technique (큰 회전각을 가지는 터빈 블레이드 표면에서 나프탈렌승화법을 이용한 열(물질)전달계수 측정)

  • Gwon, Hyeon-Gu;Lee, Sang-U;Park, Byeong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.8
    • /
    • pp.1077-1087
    • /
    • 2002
  • The heat (mass) transfer characteristics on the blade surface of a high-turning first-stage turbine rotor for power generation has been investigated by employing the naphthalene sublimation technique. A four-axis profile measurement system is developed successfully for the measurements of local sublimation depth on the curved surface In the leading edge region, there is a good agreement between the present heat (mass) transfer data and the previous result on a turbine blade with a moderate turning angle, but some discrepancies are found in the mid-chord heat (mass) transfer between the two results. The local heat (mass) transfer on the present suction surface is greatly enhanced due to an earlier boundary transition, compared with that on a turbine blade with a moderate turning angle, meanwhile there is only a slight change in the pressure-side heat (mass) transfer between the two different turbine rotors. In general, the heat (mass) transfer augmentation by the endwall vortices is found much higher on the suction surface than on the pressure surface.

A Study on the Electrode Charcteristics of the Fluornated AB$_2$ Type Hydrogen Storage Alloys (불화 처리된 AB$_2$계 수소저장합금의 전극특성에 관한 연구)

  • 박호영;이명호;조원일;조병래;이성래;주재백;윤경석
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.4
    • /
    • pp.262-271
    • /
    • 1997
  • Nickel-matal hydride(Ni-MH) batteries are receiving attention as non-pollunting. high performance rehargeable energy stoage system. The performance of Ni-Mh is significantly influenced by the hydrogen storage alloy materiels used as an anode material. Recently, having discharge capacities higher than the $AB_5$-type hydrogen storage alloys, the Zr-based $AB_2$-Type hydrogen storage alloys has remaining problems regarding cycle life and self-dischareg. These problems need to be solved by improvements in the alloy design and/or surface treatment. This work investiggates the effects the effects of surface property by fluorination on $Zr_{0.7}Ti_{0.3}V_{0.4}Mn_{0.4}Ni{1.2}$ composittion $AB_2$-Type hydrogen storage alloys. EPMA, SEM and AES techniques were used for surface analysis, and the crystal structure was characterized by constant current cycling test and potential sweep methods. Fluorination was found to be effective when La-was incorporated into the alloy, and has unique morphology, higher reactivity, and at the same time formed a protective film. Through, fluorination, the cycle life of an electrode was found to increase significantly, charge/discharge characteristics of the electrode the potential difference between the charge/discharge plateau, i.e polarization(overpotential)were improved.

  • PDF

On the Characteristic of Wind over Pusan Coastal Area, Korea (부산 연안역의 바람 특성에 관한 고찰)

  • Jeon, Byung-Il;Kim, Yoo-Keun;Lee, Hwa-Un
    • Journal of Environmental Science International
    • /
    • v.3 no.1
    • /
    • pp.1-9
    • /
    • 1994
  • We have Studied the characteristics of wind over Pusan coastal area in order to precisely predict surface wind having an important effect on oil spill fate using the data on surface observation of Pusan, Kimhae and Gadeogdo island which are collected during the 3 years from 1988 to 1990. We also investigated the correlation of the surface wind between Pusan, Kimhae and Gadeogdo island. In both Pusan areas and Kimhae, the land and sea breeze occurs during. the whole season except for winter. The occurrence frequency of land and sea breeze is significantly high from April to August. The correlation of surface wind between Pusan, Kimhae and Gadeogdo island surface wind is high in the daytime. The occurrence frequency of sea breeze in the Kimhae areas is higher than that in Pusan on the basis of the present criteria. For monthly occurrence, Pusan has the highest occurrence frequency of the sea breeze in August and Kimhae has in May.

  • PDF

Comparison of Surface Temperatures between Thermal Infrared Image and Landsat 8 Satellite (열적외 영상과 Landsat 8 위성으로부터 관측된 지표면 온도 비교)

  • Cho, Chaeyoon;Jee, Joon-Bum;Park, Moon-Soo;Park, Sung-Hwa;Choi, Young-Jean
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.1
    • /
    • pp.46-56
    • /
    • 2016
  • In order to analyze the surface temperature in accordance with the surface material, surface temperatures between Thermal InfraRed Image (TIRI) and Landsat 8 satellite observed at the commercial area (Gwanghwamun) and residential area (Jungnang) are compared. The surface temperature from TIRI had applied atmospheric correction and compared with that from Landsat 8. The surface temperatures from Landsat 8 at Gwanghwamun and Jungnang are underestimated in comparison with that from TIRI. The difference of surface temperature between the two methods is greater in summer than in winter. When the analysis area was divided into detailed regions, depending on the material and the position of the surface, correlation of surface temperature between TIRI with Landsat 8 is as low as 0.29 (Gwanghwamun) and 0.18 (Jungnang), respectively. The results were caused from the resolution difference between the two methods. While the surface temperatures of each zone from Landsat 8 were observed almost constant, high-resolution TIRI observed relatively precise surface temperatures. When the each area was averaged as one space, correlation of surface temperature between TIRIs and Landsat 8 is more than 0.95. The spatially averaged surface temperature is higher at Jungnang, representing residential areas, than at Gwanghwamun, representing commercial areas. As a result, the observation of high resolution is required in order to observe the precise surface temperature. This is because it appears that the spatial distribution of the various surface temperature in the range of micro-scale according to the conditions of the ground surface.

Shear bond strength of a layered zirconia and porcelain according to treatment of zirconia liner (치과용 지르코니아 이장재 처리에 따른 지르코니아와 도재의 전단결합강도 비교)

  • Seo, Jeong Il;Park, Won Uk;Kim, Yang Geun
    • Journal of Technologic Dentistry
    • /
    • v.39 no.1
    • /
    • pp.43-52
    • /
    • 2017
  • Purpose: Physical and chemical properties of gold is most suitable to be restored of teeth to its original state. Recently zirconia was used instead of gold because of esthetical and intimacy of human body. Because of high strength and high abrasion resistance of zirconia, all zirconia artificial tooth lead to wear the original tooth of opposite site. To preserve this original tooth, zirconia artificial tooth covered with dental ceramic glass was used. When joining the zirconia core and dental ceramic glass, difference of their thermal expansion coefficient and wetting ability is generated the residual stress at interface lead to crack. In order to solve this problem, intermediate layer what is called zir-liner was imported to decrease the residual stress and increase the bonding strength. Methods: In this study, to identify the optimum conditions for manufacturing process, various methods to rough the surface of zirconia core were adopted, and vary the thickness of interlayer, and analyzed bond strength. Results: Bond strength of sanding specimens group showed higher than that of non-sanding specimens group, and once applied intermediate layer with sanding specimens showed highest bond strength with 28 MPa. SEM photomicrographs of zirconia cores fired at $1500^{\circ}C$ showed parallel straight lines in sanding and pockmarked surface in blasting surfaces as abrasion traces. Observation of the destruction section after shear test by SEM were carried out. Liner applied non-sanding group and non-liner applied sanding group all showed interfacial crack. Sandblasting group with non-liner showed remained dental ceramic glass on the surface of zirconia. Sandblasting group with once applied liner showed partially remained liner and dental ceramic glass on the surface of zirconia. XRD analysis revealed that sandblasting group showed higher monoclinic peaks than other specimens group and this result was due to the high collision energy for stress induced phase transformation. Conclusions: A study on the improvement of bonding strength between zirconia and dental ceramic glass steadily carried out for the future to practical use.