• 제목/요약/키워드: the coefficients of elasticity

검색결과 91건 처리시간 0.023초

The dynamic stability of a nonhomogeneous orthotropic elastic truncated conical shell under a time dependent external pressure

  • Sofiyev, A.H.;Aksogan, O.
    • Structural Engineering and Mechanics
    • /
    • 제13권3호
    • /
    • pp.329-343
    • /
    • 2002
  • In this research, the dynamic stability of an orthotropic elastic conical shell, with elasticity moduli and density varying in the thickness direction, subject to a uniform external pressure which is a power function of time, has been studied. After giving the fundamental relations, the dynamic stability and compatibility equations of a nonhomogeneous elastic orthotropic conical shell, subject to a uniform external pressure, have been derived. Applying Galerkin's method, these equations have been transformed to a pair of time dependent differential equations with variable coefficients. These differential equations are solved using the method given by Sachenkov and Baktieva (1978). Thus, general formulas have been obtained for the dynamic and static critical external pressures and the pertinent wave numbers, critical time, critical pressure impulse and dynamic factor. Finally, carrying out some computations, the effects of the nonhomogeneity, the loading speed, the variation of the semi-vertex angle and the power of time in the external pressure expression on the critical parameters have been studied.

비선형거동을 고려한 방진고무의 강성해석 및 최적설계 (The Stiffness Analysis and Optimization of the Rubber Seat Considering Nonlinear Behavior)

  • 이동훈;서상호;윤영훈;박진구
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.244-249
    • /
    • 2002
  • Rubber seat is extensively used to reduce the vibration of machine or structure. Over the years an enormous effort has been put into developing procedures to provide properties of rubber material for design function. However, there are still a lot of difficulties to analyze static characteristics of rubber components with hyper elasticity and nonlinear large deformation. In this paper material property is obtained by strain-stress curve using a tension test. Mooney-Rivlin Coefficients are gotten by fitting strain-stress curve. The visco-elastic characteristics of refrigerator rubber mount is determined by using ANSYS. And to minimize the rubber stiffness, the rubber seat shape optimization is performed.

  • PDF

Stability and vibration analysis of composite plates using spline finite strips with higher-order shear deformation

  • Akhras, G.;Li, W.
    • Structural Engineering and Mechanics
    • /
    • 제27권1호
    • /
    • pp.1-16
    • /
    • 2007
  • In the present study, a spline finite strip with higher-order shear deformation is formulated for the stability and free vibration analysis of composite plates. The analysis is conducted based on Reddy's third-order shear deformation theory, Touratier's "Sine" model, Afaq's exponential model and Cho's higher-order zigzag laminate theory. Consequently, the shear correction coefficients are not required in the analysis, and an improved accuracy for thick laminates is achieved. The numerical results, based on different shear deformation theories, are presented in comparison with the three-dimensional elasticity solutions. The effects of length-to-thickness ratio, fibre orientation, and boundary conditions on the critical buckling loads and natural frequencies are investigated through numerical examples.

Rayleigh wave in an anisotropic heterogeneous crustal layer lying over a gravitational sandy substratum

  • Kakar, Rajneesh;Kakar, Shikha
    • Geomechanics and Engineering
    • /
    • 제10권2호
    • /
    • pp.137-154
    • /
    • 2016
  • The purpose of this paper is to study the propagation of Rayleigh waves in an anisotropic heterogeneous crustal layer over a gravitational semi-infinite sandy substratum. It is assumed that the heterogeneity in the crustal layer arises due to exponential variation in elastic coefficients and density whereas the semi-infinite sandy substratum has homogeneous sandiness parameters. The coupled effects of heterogeneity, anisotropy, sandiness parameters and gravity on Rayleigh waves are discussed analytically as well as numerically. The dispersion relation is obtained in determinant form. The proposed model is solved to obtain the different dispersion relations for the Rayleigh wave in the elastic medium of different properties. The results presented in this study may be attractive and useful for mathematicians, seismologists and geologists.

A review of effects of partial dynamic loading on dynamic response of nonlocal functionally graded material beams

  • Ahmed, Ridha A.;Fenjan, Raad M.;Hamad, Luay Badr;Faleh, Nadhim M.
    • Advances in materials Research
    • /
    • 제9권1호
    • /
    • pp.33-48
    • /
    • 2020
  • With the use of differential quadrature method (DQM), forced vibrations and resonance frequency analysis of functionally graded (FG) nano-size beams rested on elastic substrate have been studied utilizing a shear deformation refined beam theory which contains shear deformations influence needless of any correction coefficient. The nano-size beam is exposed to uniformly-type dynamical loads having partial length. The two parameters elastic substrate is consist of linear springs as well as shear coefficient. Gradation of each material property for nano-size beam has been defined in the context of Mori-Tanaka scheme. Governing equations for embedded refined FG nano-size beams exposed to dynamical load have been achieved by utilizing Eringen's nonlocal differential law and Hamilton's rule. Derived equations have solved via DQM based on simply supported-simply supported edge condition. It will be shown that forced vibrations properties and resonance frequency of embedded FG nano-size beam are prominently affected by material gradation, nonlocal field, substrate coefficients and load factors.

Using an equivalent continuum model for 3D dynamic analysis of nanocomposite plates

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • 제20권3호
    • /
    • pp.623-649
    • /
    • 2016
  • Most of the early studies on plates vibration are focused on two-dimensional theories, these theories reduce the dimensions of problems from three to two by introducing some assumptions in mathematical modeling leading to simpler expressions and derivation of solutions. However, these simplifications inherently bring errors and therefore may lead to unreliable results for relatively thick plates. The main objective of this research paper is to present 3-D elasticity solution for free vibration analysis of continuously graded carbon nanotube-reinforced (CGCNTR) rectangular plates resting on two-parameter elastic foundations. The volume fractions of oriented, straight single-walled carbon nanotubes (SWCNTs) are assumed to be graded in the thickness direction. In this study, an equivalent continuum model based on the Eshelby-Mori-Tanaka approach is employed to estimate the effective constitutive law of the elastic isotropic medium (matrix) with oriented, straight carbon nanotubes (CNTs). The proposed rectangular plates have two opposite edges simply supported, while all possible combinations of free, simply supported and clamped boundary conditions are applied to the other two edges. The formulations are based on the three-dimensional elasticity theory. A semi-analytical approach composed of differential quadrature method (DQM) and series solution is adopted to solve the equations of motion. The fast rate of convergence of the method is demonstrated and comparison studies are carried out to establish its very high accuracy and versatility. The 2-D differential quadrature method as an efficient and accurate numerical tool is used to discretize the governing equations and to implement the boundary conditions. The convergence of the method is demonstrated and to validate the results, comparisons are made between the present results and results reported by well-known references for special cases treated before, have confirmed accuracy and efficiency of the present approach. The novelty of the present work is to exploit Eshelby-Mori-Tanaka approach in order to reveal the impacts of the volume fractions of oriented CNTs, different CNTs distributions, various coefficients of foundation and different combinations of free, simply supported and clamped boundary conditions on the vibrational characteristics of CGCNTR rectangular plates. The new results can be used as benchmark solutions for future researches.

Improving the brittle behavior of high-strength shielding concrete blended with lead oxide, bismuth oxide, and tungsten oxide nanoparticles against gamma ray

  • Mohamed Amin;Ahmad A. Hakamy;Abdullah M. Zeyad;Bassam A. Tayeh;Ibrahim Saad Agwa
    • Structural Engineering and Mechanics
    • /
    • 제85권1호
    • /
    • pp.29-53
    • /
    • 2023
  • High-strength shielding concrete against gamma radiation is a priority for many medical and industrial facilities. This paper aimed to investigate the gamma-ray shielding properties of high-strength hematite concrete mixed with silica fume (SF) with nanoparticles of lead dioxide (PbO2), tungsten oxide (WO3), and bismuth oxide (Bi2O3). The effect of mixing steel fibres with the aforementioned binders was also investigated. The reference mixture was prepared for high-strength concrete (HSCC) containing 100% hematite coarse and fine aggregate. Thirteen mixtures containing 5% SF and nanoparticles of PbO2, WO3, and Bi2O3 (2%, 5%, and 7% of the cement mass, respectively) were prepared. Steel fibres were added at a volume ratio of 0.28% of the volume of concrete with 5% of nanoparticles. The slump test was conducted to workability of fresh concrete Unit weight water permeability, compressive strength, splitting tensile strength, flexural strength, and modulus of elasticity tests were conducted to assess concrete's engineering properties at 28 days. Gamma-ray radiation of 137Cs emits photons with an energy of 662 keV, and that of 60Co emits two photons with energies of 1173 and 1332 keV were applied on concrete specimens to assess radiation shielding properties. Nanoparticles partially replacing cement reduced slump in workability of fresh concrete. The compressive strength of mixtures, including nanoparticles was shown to be greater, achieving 94.5 MPa for the mixture consisting of 7.5 PbO2. In contrast, the mixture (5PbO2-F) containing steel fibres achieved the highest values for splitting tensile, flexural strength, and modulus of elasticity (11.71, 15.97, and 42,840 MPa, respectively). High-strength shielded concrete (7.5PbO2) showed the best radiation protection. It also showed the minimum concrete thickness required to prevent the transmission of radiation.

CAD 형상을 활용한 설계 민감도 해석 (Shape Design Sensitivity Analysis using Isogeometric Approach)

  • 하승현;조선호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.577-582
    • /
    • 2007
  • A variational formulation for plane elasticity problems is derived based on an isogeometric approach. The isogeometric analysis is an emerging methodology such that the basis functions in analysis domain arc generated directly from NURBS (Non-Uniform Rational B-Splines) geometry. Thus. the solution space can be represented in terms of the same functions to represent the geometry. The coefficients of basis functions or the control variables play the role of degrees-of-freedom. Furthermore, due to h-. p-, and k-refinement schemes, the high order geometric features can be described exactly and easily without tedious re-meshing process. The isogeometric sensitivity analysis method enables us to analyze arbitrarily shaped structures without re-meshing. Also, it provides a precise construction method of finite element model to exactly represent geometry using B-spline base functions in CAD geometric modeling. To obtain precise shape sensitivity, the normal and curvature of boundary should be taken into account in the shape sensitivity expressions. However, in conventional finite element methods, the normal information is inaccurate and the curvature is generally missing due to the use of linear interpolation functions. A continuum-based adjoint sensitivity analysis method using the isogeometric approach is derived for the plane elasticity problems. The conventional shape optimization using the finite element method has some difficulties in the parameterization of boundary. In isogeometric analysis, however, the geometric properties arc already embedded in the B-spline shape functions and control points. The perturbation of control points in isogeometric analysis automatically results in shape changes. Using the conventional finite clement method, the inter-element continuity of the design space is not guaranteed so that the normal vector and curvature arc not accurate enough. On tile other hand, in isogeometric analysis, these values arc continuous over the whole design space so that accurate shape sensitivity can be obtained. Through numerical examples, the developed isogeometric sensitivity analysis method is verified to show excellent agreement with finite difference sensitivity.

  • PDF

산업부문 에너지 수요의 비대칭 가격반응 (Asymmetric Price Responses of Industrial Energy Demand in Korea)

  • 신석하
    • 자원ㆍ환경경제연구
    • /
    • 제32권4호
    • /
    • pp.267-292
    • /
    • 2023
  • 본 논문에서는 에너지 가격에 대한 비대칭 반응을 중심으로 산업부문의 에너지 수요 모형을 시계열 방법으로 추정하였다. 에너지 가격에 대한 비대칭 반응을 모형에 포함하는 경우, 공적분 관계가 강건해지고 추정계수의 방법 간 편차도 줄어들었다. 에너지 가격이 하락할 때보다 상승할 때 에너지 수요에 더 큰 영향을 미치며, 특히 에너지 가격이 기존 최고치를 경신할 정도로 상승할 때 영향이 가장 큰 것으로 나타났다. 한편 생산지표로 부가가치보다 총산출 자료를 사용하는 경우에 추정결과가 부분적으로 개선되었다. 단일회귀식 추정방법으로 비대칭 반응모형을 추정하면, 총산출의 탄력성이 1.05~1.09, 가격상승의 탄력성이 -0.48~-0.56으로 해외 연구에서 제시하는 결과와 유사한 수준으로 나타났다.

수송부문의 연료 간 대체와 이산화탄소 배출: 바이오디젤 혼소 효과를 중심으로 (Interfuel Substitution and Carbon Dioxide Emission in the Transportation Sector: Roles of Biodiesel Blended Fuels)

  • 강효녕;서동희
    • 자원ㆍ환경경제연구
    • /
    • 제32권1호
    • /
    • pp.27-46
    • /
    • 2023
  • 본 연구는 차분연료배분모형을 이용하여 수송부문에서의 연료 간 대체성을 추정하고, 연료 간 대체에 따른 이산화탄소 배출효과를 살펴본다. 분석결과를 정리하면, 첫째, 수송부문은 경유에 대한 의존도가 매우 높아 디비지아 탄력성이 가장 큰 것으로 나타났다. 둘째, 연료별 자기가격탄력성은 모두 음(-)의 값을 보였으며, 경유의 자체가격탄력성이 휘발유와 LPG에 비해 상대적으로 낮은 것으로 나타났다. 셋째, 휘발유와 경유, 휘발유와 전기, 경유와 LPG는 대체관계를 보였으며, 경유와 전기는 보완관계를 갖는 것으로 나타났다. 넷째, 연료별 대체성과 배출계수를 이용한 결과, 바이오디젤을 경유에 혼합하는 경우 이산화탄소 감축 효과가 있으나, 주로 연료별 가격 변화에 따른 연료 간 대체가 이산화탄소 배출을 결정짓는 것으로 나타났다.