• Title/Summary/Keyword: the Stability of Boundary

Search Result 828, Processing Time 0.024 seconds

On the Stability of Critical Point for Positive Systems and Its Applications to Biological Systems

  • Lee, Joo-Won;Jo, Nam Hoon;Shim, Hyungbo;Son, Young Ik
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1530-1541
    • /
    • 2013
  • The coexistence and extinction of species are important concepts for biological systems and can be distinguished by an investigation of stability. When determining local stability of nonlinear systems, Lyapunov indirect method based on the Jacobian linearization has been widely employed due to its simplicity. Despite such popularity, it is not applicable to singular systems whose Jacobian has at least one eigenvalue that is equal to zero. In such singular cases, an appropriate Lyapunov function should be sought to determine the stability of systems, which is rather difficult and quite involved. In this paper, we seek for a simple criterion to determine stability of the equilibrium that is located at the boundary of the positive orthant, when one of eigenvalues of the Jacobian is zero. The goal of the paper is to present a generalized condition for the equilibrium to attract all trajectories that starting from initial condition in the positive orthant and near the equilibrium. Unlike the Lyapunov direct method, the proposed method requires just a simple algebraic computation for checking the stability of the critical point. Our approach is applied to various biological systems to show the effectiveness of the proposed method.

The wave stability of the nonparallel natural convection flows adjacent to an inclined isothermal surface submerged in water at $4degC$ ($4degC$ 물에 잠겨있는 경사진 등온 벽주위 비평행 자연대류의 파형 안정성)

  • 황영규;장명륜
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.644-653
    • /
    • 1991
  • A wave instability problem is formulated for natural convection flows adjacent to a inclined isothermal surface in pure water near the density extremum. It accounts for the nonparallelism of the basic flow and temperature fields. Numerical solutions of the hydrodynamic stability equations constitute a two-point boundary value problem which are accurately solved using a computer code COLSYS. Neutral stability results for Prandtl number of 11.6 are obtained for various angles of inclination of a surface in the range from-10 to 30 deg. The neutral stability curves are systematically shifted toward modified Grashof number G=0 as one proceeds from downward-facing inclined plate(.gamma.<0.deg.) to upward-facing inclined plate (.gamma.>0.deg.). Namely, an increase in the positive angle of inclination always cause the flows to be significantly more unstable. The present results are compared with the results for the parallel flow model. The nonparallel flow model has, in general, a higher critical Grashof number than does the parallel flow model. But the neutral stability curves retain their characteristic shapes.

A numerical study on nonlinear stability of higher-order sandwich beams with cellular core and nanocomposite face sheets

  • Ding, Ke;Jia, Hu;Xu, Jun;Liu, Yi;Al-Tamimi, Haneen M.;Khadimallah, Mohamed Amine
    • Structural Engineering and Mechanics
    • /
    • v.83 no.4
    • /
    • pp.465-473
    • /
    • 2022
  • In this research, a numerical study has been provided for examining the nonlinear stability behaviors of sandwich beams having a cellular core and two face sheets made of nanocomposites. The nonlinear stability behaviors of the sandwich beam having geometrically perfect/imperfect shapes have been studied when it is subjected to a compressive buckling load. The nanocomposite face sheets are made of epoxy reinforced by graphene oxide powders (GOPs). Also, the core has the shape of a honeycomb with regular configuration. Using finite element method based on a higher-order deformation beam element, the system of equations of motions have been solved to derive the stability curves. Several parameters such as face sheet thickness, core wall thickness, graphene oxide amount and boundary conditions have remarkable influences on stability curves of geometrically perfect/imperfect sandwich beams.

CR GEOMETRY/ANALYSIS AND DEFORMATION OF ISOLATED SINGULARITIES

  • Miyajima, Kimio
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.193-223
    • /
    • 2000
  • In the late 1970's, M. Kuranishi proposed to control the moduli of the germ of a normal Stein space by deformations of the CR structure on the boundary. I this paper, we will see that it is naturally accomplished by considering stably embeddable deformations of CR structures.

  • PDF

ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO 3D CONVECTIVE BRINKMAN-FORCHHEIMER EQUATIONS WITH FINITE DELAYS

  • Le, Thi Thuy
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.3
    • /
    • pp.527-548
    • /
    • 2021
  • In this paper we prove the existence of global weak solutions, the exponential stability of a stationary solution and the existence of a global attractor for the three-dimensional convective Brinkman-Forchheimer equations with finite delay and fast growing nonlinearity in bounded domains with homogeneous Dirichlet boundary conditions.

MULTI-LEVEL ADAPTIVE SOLUTIONS TO INITIAL-VALUE PROBLEMS

  • Shamardan, A.B.;Essa, Y.M. Abo
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.1
    • /
    • pp.215-222
    • /
    • 2000
  • A multigrid algorithm is developed for solving the one- dimensional initial boundary value problem. The numerical solutions of linear and nonlinear Burgers; equation for various initial conditions are studied. The stability conditions are derived by Von -Neumann analysis . Numerical results are presented.

Stability of the Grain Configurations of Thin Films-a Model for Agglomeration (박막내 결정립 배열의 열적 불안정성1)-응집 모델)

  • Na, Jong-Ju;Park, Jung-Geun
    • 연구논문집
    • /
    • s.27
    • /
    • pp.183-200
    • /
    • 1997
  • We have calculated the energy of three distinct grain configurations, namely completely connected, partially connected and unconnected configurations, evolving during a spheroidization of polycrystalline thin film by extending a geometrical model due to Miller et al. to the case of spheroidization at both the surface and film-substrate interface. "Stabilitl" diagram defining a stable region of each grain configuration has been established in terms of the ratio of grain size to film thickness vs. equilibrium wetting or dihedral angles at various interface energy conditions. The occurrence of spheroidization at the film-substrate interface significantly enlarges the stable region of unconnected grain configuration thereby greatly facilitating the occurrence of agglomeration. Complete separation of grain boundary is increasingly difficult with a reduction of equilibrium wetting angle. The condition for the occurrence of agglomeration differs depending on the equilibrium wetting or dihedral angles. The agglomeration occurs, at low equilibrium angles, via partially connected configuration containing stable holes centered at grain boundary vertices, whereas it occurs directly via completely connected configuration at large equilibrium angles except for the case having small surface and/or film-substrate interface energy. The initiation condition of agglomeration is defined by the equilibrium boundary condition between the partially connected and unconnected configurations for the former case, whereas it can, for the latter case, largely deviate from the equilibrium boundary condition between the completely connected and unconnected configurations because of the presence of a finite energy barrier to overcome to reach the unconnected grain configuration.

  • PDF

MULTI-BLOCK BOUNDARY VALUE METHODS FOR ORDINARY DIFFERENTIAL AND DIFFERENTIAL ALGEBRAIC EQUATIONS

  • OGUNFEYITIMI, S.E.;IKHILE, M.N.O.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.24 no.3
    • /
    • pp.243-291
    • /
    • 2020
  • In this paper, multi-block generalized backward differentiation methods for numerical solutions of ordinary differential and differential algebraic equations are introduced. This class of linear multi-block methods is implemented as multi-block boundary value methods (MB2 VMs). The root distribution of the stability polynomial of the new class of methods are determined using the Wiener-Hopf factorization of a matrix polynomial for the purpose of their correct implementation. Numerical tests, showing the potential of such methods for output of multi-block of solutions of the ordinary differential equations in the new approach are also reported herein. The methods which output multi-block of solutions of the ordinary differential equations on application, are unlike the conventional linear multistep methods which output a solution at a point or the conventional boundary value methods and multi-block methods which output only a block of solutions per step. The MB2 VMs introduced herein is a novel approach at developing very large scale integration methods (VLSIM) in the numerical solution of differential equations.

STABILITY ON SOLUTION OF POPULATION EVOLUTION EQUATIONS WITH APPLICATIONS

  • Choi, Q-Heung;Jin, Zheng-Guo
    • Communications of the Korean Mathematical Society
    • /
    • v.15 no.4
    • /
    • pp.605-616
    • /
    • 2000
  • We prove the non-homogeneous boundary value problem for population evolution equations is well-posed in Sobolev space H(sup)3/2,3/2($\Omega$). It provides a strictly mathematical basis for further research of population control problems.

  • PDF

FINITE-DIFFERENCE BISECTION ALGORITHMS FOR FREE BOUNDARIES OF AMERICAN OPTIONS

  • Kang, Sunbu;Kim, Taekkeun;Kwon, Yonghoon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.1
    • /
    • pp.1-21
    • /
    • 2015
  • This paper presents two algorithms based on the Jamshidian equation which is from the Black-Scholes partial differential equation. The first algorithm is for American call options and the second one is for American put options. They compute numerically free boundary and then option price, iteratively, because the free boundary and the option price are coupled implicitly. By the upwind finite-difference scheme, we discretize the Jamshidian equation with respect to asset variable s and set up a linear system whose solution is an approximation to the option value. Using the property that the coefficient matrix of this linear system is an M-matrix, we prove several theorems in order to formulate a bisection method, which generates a sequence of intervals converging to the fixed interval containing the free boundary value with error bound h. These algorithms have the accuracy of O(k + h), where k and h are step sizes of variables t and s, respectively. We prove that they are unconditionally stable. We applied our algorithms for a series of numerical experiments and compared them with other algorithms. Our algorithms are efficient and applicable to options with such constraints as r > d, $r{\leq}d$, long-time or short-time maturity T.