• Title/Summary/Keyword: the Riemann sphere

Search Result 7, Processing Time 0.023 seconds

REGULAR BRANCHED COVERING SPACES AND CHAOTIC MAPS ON THE RIEMANN SPHERE

  • Lee, Joo-Sung
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.3
    • /
    • pp.507-517
    • /
    • 2004
  • Let (2,2,2,2) be ramification indices for the Riemann sphere. It is well known that the regular branched covering map corresponding to this, is the Weierstrass P function. Lattes [7] gives a rational function R(z)= ${\frac{z^4+{\frac{1}{2}}g2^{z}^2+{\frac{1}{16}}g{\frac{2}{2}}$ which is chaotic on ${\bar{C}}$ and is induced by the Weierstrass P function and the linear map L(z) = 2z on complex plane C. It is also known that there exist regular branched covering maps from $T^2$ onto ${\bar{C}}$ if and only if the ramification indices are (2,2,2,2), (2,4,4), (2,3,6) and (3,3,3), by the Riemann-Hurwitz formula. In this paper we will construct regular branched covering maps corresponding to the ramification indices (2,4,4), (2,3,6) and (3,3,3), as well as chaotic maps induced by these regular branched covering maps.

DETERMINANTS OF THE LAPLACIANS ON THE n-DIMENSIONAL UNIT SPHERE Sn (n = 8, 9)

  • Choi, June-Sang
    • Honam Mathematical Journal
    • /
    • v.33 no.3
    • /
    • pp.321-333
    • /
    • 2011
  • During the last three decades, the problem of evaluation of the determinants of the Laplacians on Riemann manifolds has received considerable attention by many authors. The functional determinant for the n-dimensional sphere $S^n$ with the standard metric has been computed in several ways. Here we aim at computing the determinants of the Laplacians on $S^n$ (n = 8, 9) by mainly using ceratin known closed-form evaluations of series involving Zeta function.

ON SPHERICALLY CONCAVE FUNCTIONS

  • KIM SEONG-A
    • The Pure and Applied Mathematics
    • /
    • v.12 no.3 s.29
    • /
    • pp.229-235
    • /
    • 2005
  • The notions of spherically concave functions defined on a subregion of the Riemann sphere P are introduced in different ways in Kim & Minda [The hyperbolic metric and spherically convex regions. J. Math. Kyoto Univ. 41 (2001), 297-314] and Kim & Sugawa [Charaterizations of hyperbolically convex regions. J. Math. Anal. Appl. 309 (2005), 37-51]. We show continuity of the concave function defined in the latter and show that the two notions of the concavity are equivalent for a function of class $C^2$. Moreover, we find more characterizations for spherically concave functions.

  • PDF

THE EXTENDED REAL LINE AS A JULIA SET

  • AKBARI, MONIREH;RABII, MARYAM
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.4
    • /
    • pp.1107-1112
    • /
    • 2015
  • A recursive family $\{F_n\}$ of holomorphic functions on the Riemann sphere is defined and some elementary properties of this family is described. Then the Julia set of $F_n$ is computed. Finally this family as a real recursive family is studied and it is shown that $F_n$ is chaotic on a specific subset of $\mathbb{R}$.

CHAOTIC HOMEOMORPHISMS OF C INDUCED BY HYPERBOLIC TORAL AUTOMORPHISMS AND BRANCHED COVERINGS OF C

  • Lee, Joo-Sung
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.1
    • /
    • pp.105-115
    • /
    • 2003
  • It is well known that there exists a regular branched covering map from T$^2$ onto $\={C}$ iff the ramification indices are (2,2,2,2), (2,4,4), (2,3,6) and (3,3,3). In this paper we construct (count-ably many) chaotic homeomorphisms induced by hyperbolic toral automorphism and regular branched covering map corresponding to the ramification indices (2,2,2,2). And we also gave an example which shows that the above construction of a chaotic map is not true in general if the ramification indices is (2,4,4) and also show that there are no chaotic homeomorphisms induced by hyperbolic toral automorphism and regular branched covering map corresponding to the ramification indices (2,3,6) and (3,3,3).

A NOTE ON EXTREMAL LENGTH AND CONFORMAL IMBEDDINGS

  • Chung, Bo-Hyun
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1315-1322
    • /
    • 2010
  • Let D be a plane domain whose boundary consists of n components and $C_1$, $C_2$ two boundary components of D. We consider the family $F_1$ of conformal mappings f satisfying f(D) $\subset$ {1 < |w| < ${\mu}(f)$}, $f(C_1)=\{|w|=1\}$, $f(C_2)=\{|w|={\mu}(f)\}$. There are conformal mappings $g_0$, $g_1({\in}F_1)$ onto a radial and a circular slit annulus respectively. We obtain the following theorem, $$\{{\mu}(f)|f\;{\in}\;F_1\}=\{\mu|\mu(g_1)\;{\leq}\;{\mu}\;{\leq}\;{\mu}(g_0)\}$$. And we consider the family $F_n$ of conformal mappings $\tilde{f}$ from D onto a covering surfaces of the Riemann sphere satisfying some conditions. We obtain the following theorems, {$\mu|1$ < ${\mu}\;{\leq}\;{\mu}(g_1)$} ${\subset}\;\{{\mu}(\tilde{f})|\tilde{f}\;{\in}\;F_2\}\;{\subset}\;\{{\mu}(\tilde{f})|\tilde{f}\;{\in}\;F_n\}$ and ${\mu}(\tilde{f})\;{\leq}\;{\mu}(g_0)^n$.