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A CHARACTERIZATION OF
HYPERBOLIC TORAL AUTOMORPHISMS

Joo SuNG LEE

ABSTRACT. Let L : C — C be a hyperbolic automorphism. Then
the hyperbolic toral automorphism L4 : T? — T2, induced by L,
is a chaotic map ([2] pg.192). We characterize hyperbolic toral
automorphisms by proving the converse of the above statement.

1. Introduction

Let (2,2,2,2) be ramification indices for the Riemann sphere. It is
well known that the regular branched covering map corresponding to
this, is the Weierstrass P function. Lattes [3] (See also [2] pg.291) gives
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a chaotic rational function R(z) = —%zs‘_g—ﬂm—z on C which is induced
by the Weierstrass P function and the linear map L(z) = 2z on the
complex plane C. Recently the author classified chaotic maps of the
Riemann sphere C which are induced by regular branched coverings
from T2 onto C and the linear map 2z [4]. _

Let L : C — C be a hyperbolic automorphism. Then the hyperbolic
toral automorphism L4 : T? — T2, which is induced by L, is a chaotic
map ([2], pg-192).

Now let A be a 2 x 2 integer matrix with |det(A)| = 1. If A is non-
hyperbolic, then we have 3 cases for characteristic solutions X of A : (1)
X\’s are complex non real numbers, (2) A=4lor (3) A=1or A= -1
with multiple root. We characterize hyperbolic toral automorphisms by
proving if A is non-hyperbolic, then L4 is not a chaotic map (Theorem
3.1, 3.2 and 3.4).
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2. Background and definitions

Let f: M — M be a map of the metric space M. Amap f M —- M
is chaotic if and only if f has sensitive dependence on initial conditions,
f is topologically transitive and the periodic points are dense in M.
Remark that f is topologically transitive if and only if for any pair of
nonempty open sets U, V C M there exists k& > 0 such that f*(U)NV #
0. We refer to the reader [2] for a detailed definition and examples of
chaotic map.

The following simple characterization of chaotic maps which is proved
by Touhey (5], is very useful to prove whether a map is chaotic or not.
For example, we can easily check that the inverse of a chaotic homeo-
morphism is also chaotic by this characterization. For the proof of the
following proposition, he applied [1] which showed that sensitive depen-
dence on initial conditions is implied by the remaining two conditions.

PROPOSITION 2.1. [5] A map f: M — M is chaotic if and only if for
all non-empty open sets U and V of M, f has a periodic orbit I" such
that TCNU #QPand TNV # 0.

Let A be the lattice induced by wiy,we € C with wi/we ¢ R. Let
7 be the identification map of C such that 7(z) = 7(z + nwy + mws)
for n,m € Z. Then we have the torus T2 induced by =. In particular
if wy =1 and wy = ¢, then we call A the square lattice, which we will
use later. Now let f : C — C be a function such that f(z) — f(z +
nwy + mws) belongs to the lattice points for all points 2z € C. It follows
that m o f(2) = mo f(z + nwy + mwz) and therefore f induces a well
defined map f : T2 — T? with f(n(z)) = mo f(z) such that the following

diagram commutes.
c—L ¢

v ™

T2_4L_, T2

Let L : C — C be a linear map whose matrix representation is an
integer matrix A. Then L is clearly well-defined on T? which is induced
by the square lattice. We call L a toral automorphism, denoted by L 4.

DEFINITION 2.1. Let L(x) = Az, where A is a 2 X 2 matrix satisfying
1. All entries of A are integers.
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2. det(A) = £1.
3. A is hyperbolic, i.e., A has no eigenvalues on unit circle. Then we
call Ly : T? — T? a hyperbolic toral automorphism.

PROPOSITION 2.2. ([2], pg.192) Let Ls be a hyperbolic toral auto-
morphism of T?. Then L, is a chaotic map.

Let f: X — X and g: Y — Y be two maps. f and g are said to
be topologically semi-conjugate if and only if there exists an onto map
h : X — Y such that ho f = go h. We call h a topological semi-
conjugacy. Then we can easily prove that if f : X — X is chaotic then
g:Y — Y is also chaotic using Proposition 2.1.

3. A characterization of hyperbolic toral automorphisms

Let A = ( Z Z > be an integer matrix with det(4) = +1 and let A

be the characteristic solutions of A. Then A\ = (atd)ty (a+2d) 2_4(ad_bc).

Here, characteristic solutions of A mean the roots of characteristic poly-
nomial of A.

We now suppose that L4 is not a hyperbolic toral automorphism;
i.e., A does not have real eigenvalues which are not in the unit circle.
Then we have 3 different cases:

(1) characteristic solutions are complex numbers,

(2) characteristic solutions are 41, or

(3) characteristic solutions are 1 or —1 with multiple root.

In this section, we characterize the hyperbolic toral automorphisms
by proving that the map L4 can not be chaotic in any of the above 3
cases (Theorem 3.1, 3.2 and 3.4).

3.1. Case (1). Characteristic solutions are complex numbers

b
d

+1. If a characteristic solution of A is a complex number then it has
norm 1. Moreover the two solutions are conjugate.

LEMMA 3.1. Let A = < (CL be an integer matrix with det(A) =

PRrROOF. Let A be a complex characteristic solution of A. Then ad —
bc = 1 and (a+d)? < 4 by the formula of \. Hence )\ = a—;—d:i:_wi.
Therefore |A| = 1 and two characteristic solutions are conjugate. O

Remark that if det(A) = —1, then A has real eigenvalues from the
formula of A\. But the converse is not true in general. For example
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2 -1
1 0
det(A) = 1. In general, matrices in Case (3) have a real characteristic
solution but det(A4) = 1.

A= has a real characteristic solution with multiple root, but

Let A = Z g be an integer matrix with det(A) = 1. Recall

that if characteristic solutions A are complex numbers then ad —bc =1
and (a + d)? < 4. Therefore a +d =0, lor — 1. Thena +d is 0, 1 or

—~1 if and only if X is %4, % + —‘/2& or —% + @ respectively.

a b
d

det(A) = 1. If A has complex characteristic solutions +i, then L4 :
T2 — T? is not a chaotic map.

PrOPOSITION 3.1. Let A = be an integer matrix with

ProOOF. If A has a complex characteristic solutions +i, then A has

the form ( ?Z _bn > Now we can easily check that A is periodic with

period 4 since det(A) = 1. Consequently L4 : T2 — T? can not be
chaotic. 0

PROPOSITION 3.2. Let A = ( Z Z > be an integer matrix with

det(A) = +1. If A has complex characteristic solutions % + @ or
—% + @, then L4 : T? — T? is not a chaotic map.

PROOF. We can prove the proposition by matrix multiplication. Note
that we have two cases, a +d = 1 or a + d = —1 by the formula of
A. Consider the case a +d = 1. Then the (2,1) component of A3 is
alac + cd) + c(bc + d?). Recall that det(A) = 1 since A has complex
characteristic solutions. Then a(ac+ cd) +c(bc+d?) = 0 by substituting
d=1-a and bc = ad — 1. We also have the (1,2) component of A3,
b(a? + bc) + d(ab + bd) = 0 by substituting d = 1 — a and bc = ad — 1.

Similarly, we have the (1,2) and (2,1) components of A3 are 0 in case
a + d = —1 by direct computation.

Note that det(A3) = 1, therefore A% = ( (1) (1) ) or ( ~01 _01 )

Consequently A is periodic with period 3 or 6 respectively. Consequently
L4 :T? — T2 can not be chaotic. [

We now state one result from Proposition 3.1 and Proposition 3.2 in
Case (1).
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THEOREM 3.1. Let A be a 2 x 2 integer matrix with det(A) = +£1.
If A has complex characteristic solutions, then the induced toral auto-
morphism L4 : T? — T? is not chaotic.

3.2. Case (2). Characteristic solutions are +1

Let A be a 2 x 2 integer matrix with det(4) = %1 and let A = +1
be characteristic solutions of A. If det(A4) = 1, then (a +d)? —4 > 0
from the formula of A. Then A can not be +1. We now suppose that

det(A) = —1. Then X = y(a+d) * VQ(a+d)2+4. Consequently A = £1 if and
only if a + d = 0 and det(A4) = —1.

THEOREM 3.2. Let A = ( Z z ) be an integer matrix with det(A) =

+1 and let A = +1 be the characteristic solutions of A. Then L4 : T? —
T? is not chaotic.

PRrOOF. Note that A has the form A = < Z __b > Since det(A) =
-1, n2 4+ bc = 1. Hence A? = (1) (1J and therefore A is periodic

with period 2. We also can prove the theorem as follows: Since +1 are
eigenvalues, there exists an invertible matrix P such that P~1AP = D,

where D = ( é _01 ) Then A is periodic with period 2. Consequently

the induced toral automorphism L4 : T2 — T? is not chaotic. O

3.3. Case (3). Characteristic solutions are 1 or —1 with mul-
tiple root

We will show that we can construct three disjoint simple closed curves
which are fixed or invariant such that one of the simple closed curves
maps onto itself in Case (3) [Proposition 3.3 and Corollary 3.1]. Then
we will show that the induced map L4 in Case (3) does not satisfy
topological transitivity and therefore it can not chaotic [Theorem 3.3
and Corollary 3.2].

3.3.1. Characteristic solution is 1 with multiple root. Let A be a matrix
whose characteristic solution is 1 with multiple root. Then the matrix
A satisfies a + d = 2 and det(A) = 1 from the characteristic solutions
formula. Note that if A = 1 with multiple root and its eigen space is R2,
then Az = 2. Therefore A = I.
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We now look at the following examples. Each examples have different
number of disjoint simple closed curves as the fixed point set under the
induced map L 4.

4 -9
1 -2
(3t,t). Therefore Lg : T? — T? has the fixed point set Sy, where S is
the simple closed curve in the identification space T induced by eigen
vector (3t,t), i.e., induced by y = %x Note that S; is the only fixed
point set.

EXAMPLE 1. Let A = . Then A =1 and its eigen space is

9 16
-4 -7
which is four disjoint union of simple closed curves. Moreover they are
induced by y = —%—m, y= —%x-}—%, y = —%x—l—% and y = —%x%—% in the
identification space T2. Remark that the simple closed curve induced by
Y= —%x+%, y = —%x—{—g, y = —%x+% and y = —%x—!—% are the same
simple closed curves induced by y = —%x, Yy = —%x + %, Y= —%m + %
and y = —%m + % respectively. We will explain later why the simple
closed curves induced by those lines are the fixed point sets.

EXAMPLE 2. Let A = . Then L 4 has the fixed point sets

:g Z ) Then L4 : T? — T? has three

disjoint fixed point sets, each of which is homeomorphic to a simple
closed curve, induced by (¢,t), (t,¢t+ 1) and (¢,¢+ %). And those three
disjoint simple closed curves are the only fixed point sets.

EXAMPLE 3. Let A =

In general, we can find the fixed point sets by solving ( Z Z :

= ( Z:’: ) (equivalently< a;l d—b-l )( ;j ): < ZL )),wherem,n

are integers.

Then (a~1)z+by = k(cz+(d—1)y) or k((a—1)z+by) = cz+(d—1)y,
where k is a rational number.

Case 1: £k =0.

Since k = 0 we have two cases; (a— 1)z +by =0or cz+(d—1)y = 0.

1 01
and det(A) = 1. We denote those matrices A and B respectively.

We consider the matrix A first. Let ( 0 0 >( z ): ( m >,
n 0 ] msa

where my and my are integers. Then the solution of the above equations,

Then the matrix is ( :L 0 ) or ( L on ) respectively since a +d = 2
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x = T2, is the fixed point sets. Therefore if n > 3, then we have more
than two disjoint simple closed curves as the fixed point set.

Now we consider the case n = 1 and n = 2. In case n = 1 we can
easily check that each simple closed curves Sy and S3 induced by z = %
and x = % respectively is invariant under L 4. Therefore we have three
simple closed curves such that the simple closed curve Si, induced by
z = 0 is fixed and S, and S5 are invariant.

In case n = 2 the simple closed curves S; and S induced by z = 0
and x = % respectively are the fixed point sets. Now we also can check
that the simple closed curve S5 induced by z = % is invariant under L 4.

We now consider when the matrix is B. Then, by the same argu-
ment as the matrix A, we have the fixed point sets induced by y = 7.
Moreover if n = 1, then we have two simple closed curves induced by
Yy = % and y = % each of which is invariant under Lg (if n = 2, then
the simple closed curves induced by y = % is invariant under Lg). Con-
sequently we have three disjoint simple closed curves each of which is
fixed or invariant under the induced map Lp.

Case 2: k#0.

It suffice to consider when (a — 1)z +by = k(cx + (d—1)y). As shown
in the examples, cx + (d — 1)y = n is the fixed point set or invariant set

in the identification space T2. In fact, ( a; Lob ) ( z ):

d—1 i

bn

dnTl since a+d = 2 and det(A) = 1. Therefore if /% is an integer,
then the simple closed curve induced by y = %52+ "5 is the fixed point
set, otherwise the simple closed curve is invariant for 1 <n < |1 —d].

Now we consider the case when the number of simple closed curves
induced by the above one or two.

a b T z+?

Note that ( e d )( ot >= ( 1—Eﬁ(x+§)+% ) for ¢ > 2 and
¢g € Zbya+d=2and det(A) = 1. Therefore the simple closed curve
induced by £z + %1 for ¢ > 2 and q € Z is invariant set under L4.
Moreover the simple closed curve induced by 552 + % for ¢ > 2 and
g € Z and m < q is also invariant set under L4 by the same argument
as the above.

Consequently we have more than one disjoint simple closed curves
each of them is invariant under L, when the fixed point sets is one
simple closed curve or disjoint union of two simple closed curves.

We now state the above arguments as proposition.
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ProprosSITION 3.3. Let Z Z ) be an integer matrix with det(A) =
+1 and let the characteristic solution be 1 with multiple root. Then the
fixed point set of the induced toral automorphism Ly : T? — T? is a
simple closed curve or a disjoint union of simple closed curves, which are
parallel, in the identification space T?. Moreover if the fixed point sets
is a simple closed curve or disjoint union of two simple closed curves,
then we can find more than one simple closed curves, parallel to the
fixed simple closed curves, each of which is invariant under L 4.

3.3.2. Characteristic solution is —1 with multiple root. Let Az( : Z

be an integer matrix with det(A) = +1 and let the characteristic solution
be —1 with multiple root. We will show that there exist more than two
simple closed curves which are invariant. Moreover one of the invariant
simple closed curve S; maps onto itself by Ly, i.e., L4(S1) = 5.

Note that —A has eigenvalue 1 with multiple root. Therefore the
induced toral automorphism L(_ 4y : T? — T? has fixed point sets which
is a simple closed curve or finite disjoint union of simple closed curves
by Proposition 3.3. Then the fixed point sets of L(_,4) are invariant
set under the map L4. In fact, let S; be the fixed point set. Then
LA(S5;) = S; or La(S;) = Sj and La(S;) = S;, since Ly(z) = —=z for
elements of the fixed point sets of L_4).

2 -3
3 —4
So —A has fixed point sets, which is a disjoint union of simple closed
curves induced by (¢,t), (¢,t+ %) and (¢, + %) denoted by S;, 5> and
S3 respectively. Then this fixed points set of L_ 4 is invariant set under
L, . Note that L4(S1) = S1, La(S2) = S3 and L4(S3) = Ss.

We will only consider when —A has the fixed point set which is one
simple closed curve or two disjoint union of simple closed curves to get
three disjoint union of simple closed curves, which are invariant, since
if —A have more than two simple closed curves as the fixed point set,
then they are invariant and the simple closed curve induced by the line,
passing through the origin, maps onto itself by L 4.

Case 1': When —A is Case 1.
The matrix has the form A = :i _01 ) or _01 :712 ) in this
case. We will only consider when n = 1 or n = 2. As we have shown,

whenA=<‘1 0

EXAMPLE 4. Let A = Then —A is just Example 3.

1 1 ), the simple closed curves S5 and Ss induced
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by =z = % and z = -}; are invariant under L_ 4. Then we can compute
L4(S2) = Sy and L4(S3) = S4, where Sy is the simple closed curve
induced by z = % Recall that S, which is the fixed point set of L_4,
maps onto itself by L4 since Sp is induced by y axis. Similarly, we have
same result when n = 2.

Now let A = ( —01 :i

and S4 which are induced by y =0,y = %—, Y= % and y = % respectively
such that LA(Sl) = Sl, LA(Sz) = SQ , LA(Sg) = 54 and LA(S4) = S3.
We also have same result when n = 2.

Case 2': When —A is Case 2.

Let A be the matrix such that —A is the matrix in Case 2. It suffice
to consider when —A have one or two disjoint simple closed curves as
the fixed point set. Let S; be the simple closed curve induced by the line
passing through the origin. Then L4(S;) = S1. Now let y = %a: + % be
invariant set which induces a simple closed curve Sz under the induced
toral automorphism L_ 4, where k = 9—;—1 is rational number and ¢ > 2
is an integer. Then L4(S2) = S3 and L%(S2) = Sa, where the simple
closed curve S5 is induced by y = %m — % (equivalently y = %.T + %).
Consequently we have three disjoint simple closed curve such that one
of them maps onto itself.

>. Then we can find invariant sets Sy, 52, S3

a b
d
+1 and let the characteristic solution be —1 with multiple root. Then
there exist at least three finite disjoint union of simple closed curves
which are invariant. In particular the simple closed curve induced by
the line passing through the origin maps onto itself by L. Moreover
those simple closed curves are parallel in the identification space T2.

COROLLARY 3.1. Let be an integer matrix with det(A) =

Z be an integer matrix with det(A) = %1
and let the characteristic solution be 1 with multiple root. If the fixed
point sets of L4 : T? — T? in Proposition 3.3 is more than two disjoint

simple closed curves, then L4 is not chaotic.

THEOREM 3.3. Let Z

Proor. It suffices to consider when the fixed point set of L 4 is three
disjoint simple closed curves Si, So and S3. Since S, S2 and S3 are
parallel, T2 — U=3S; are three components, denoted by Dy, Dy and Ds,
where D is the component between S; and S5, Dy is the component
between S and S3, and Dj is the component between S3 and S;. Let
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Dx = Dy UD3US;. Then Dx and Ds are disjoint components whose
common boundary is Sy U S3.

Now let U be a small open set in Dy and let V' € Dx be a small
open neighborhood of x € S such that U and V' do not intersects .S, or
S3. Consider L (V') for n € N. Note that S;’s are the fixed point sets.
Therefore if there exists n such that L (V) NU # 0, then L% (V) must
intersect Sz or S3. But this is impossible. In fact, if y € L% (V) with
y € S U S3 then y = L,"(y) € V. This contradicts for the choice of V.

Consequently L4 : T2 — T? is not topologically transitive and
thereforeL 4 is not chaotic. O

We now show that we have the same result as Theorem 3.3 when the
invariant set is disjoint union of more than two simple closed curves and
one of them maps onto itself. We state and prove this fact as corollary,
whose proof is basically same as Theorem 3.3.

b
d

+1 and let the characteristic solution be 1 or —1 with multiple root.
If the invariant set (including fixed point set) of Ly : T* — T2 in
Proposition 3.3 and Corollary 3.1 is more than two disjoint simple closed
curves such that one of them maps onto itself, then L 4 is not chaotic.

COROLLARY 3.2. Let z be an integer matrix with det(A) =

Proor. It suffices to consider when the invariant set is three disjoint
simple closed curves 51, S2 and S3. Let S be the simple closed curve
induced by the line passing through the origin. Recall that 57 is invari-
ant, i.e., L4(S1) = S1. Now let V be a small open set containing z € St
and U an open set in the component between Sy and S3 such that U
and V does not intersect Sy or S3.

Suppose that there exists n such that L% (V)N U # 0. Then L% (V)
must intersect Sz or S3. But this is impossible. In fact, if y € L% (V)
with y € S, US3, then L"(y) € V. But L,"(y) € S2 U S3. This
contradicts for the choice of V.

Consequently Ly : T? — T? is not topologically transitive and
thereforeL 4 is not chaotic. d

We now state one of main results in Case (3) from Theorem 3.3 and
Corollary 3.2.

a

THEOREM 3.4. Let A = |- | be an integer matrix with det(A) =

b
d
+1 and let A = 1 or A = —1 be characteristic solutions of A with multiple
root. Then L4 : T? — T? is not chaotic.
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