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A NOTE ON EXTREMAL LENGTH AND CONFORMAL
IMBEDDINGS'

BOHYUN CHUNG*

ABSTRACT. Let D be a plane domain whose boundary consists of n compo-
nents and C7,Ca two boundary components of D. We consider the family
F1 of conformal mappings f satisfying f(D) C {1 < |w| < p(f)}, f(C1) =
{lw] = 1}, f(C2) = {|w| = p(f)}. There are conformal mappings go, g1 (€
F1) onto a radial and a circular slit annulus respectively. We obtain the
following theorem,

{u(HIf € 1} = {ulu(g1) < u < p(go)}-

And we consider the family F}, of conformal mappings f from D onto a
covering surfaces of the Riemann sphere satisfying some conditions. We
obtain the following theorems,

{1 < < p(g1)} C{u(h)If € Fo} C{u(f)If € Fu}
and 1(f) < pu(go)™.
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1. Introduction

The method of extremal length is a useful tool in a wide variety of areas. Es-
pecially, it has been successfully applied to conformal mappings, analytic func-
tions. Extremal length was introduced as a conformally invariant measure of
curve families. This development appeared in Ahlfors and Beurling|[7].

Let D be a plane domain whose boundary consists of non-degenerate n(2 <
n < 0o) components. Let C1,Cy be two boundary components of D.
We consider the family Fy = Fy(D) of univalent conformal mappings f on D
satisfying the following conditions (1), (2) and (3).

(1) f(D) {1 <fw| < p(f)}
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(2) f(C1) ={lw|=1}
(3) f(C2) = {Jw] = nu(f)}
Condition (2) (resp. (3)) means that z — Cy (resp. Cs ) if and only if
f(z) = {lw] =1} (resp. {|w| = pu(f)}).
In the family Fj, there are conformal mappings gy and g; onto a radial and
a circular slit annulus respectively. That is,
g90(D) C {1 < |w| < p(go)}
90(C1) ={lwl =1}, go(C2) = {|lw| = p(go)}
and
{1 <|w| < p(go)} — g90(D)
consists of (n — 2) concentric radial slits. Similarly
{1 <|wl <plg1)} —91(D)
consists of (n — 2) concentric circular slits.
Since go and g; are determined uniquely up to rotations about the origin, u(go)

and p(g1) are determined uniquely. We say that go(resp. g¢1) is the normalized
radial (resp. circular) slit mapping on D. Extremal properties of go and ¢y
imply

{nHIf € B} < {ulplgr) < p < plgo)}-

(See [11] for the extremal properties.)
In this note, we use the method of extremal length of a curve family to the
boundary behavior of conformal mappings. we will prove that

{HIf € Fry = {plu(gr) < p < p(go)}-

And we consider conformal mappings f from D onto a covering surfaces of
the Riemann sphere such that

F(C) ={lw| =1}, F(C2) = {lw| = u(H)}
(see section 2 for the definition). We shall study the range of u(f).
2. Extremal length and extremal property

Let T be a family whose elements v are curves in a domain D and p(z) a
non-negative Borel measurable function. For v and D, we have

L(v, p)=/f|dz, A(D, p)=//Dp2dxdy-

We introduce the minimum length
L(1 = inf L(~, p).
(T, p) }/IéF (7: p)

Definition 2.1 ([1]). The extremal length of T in D is defined by
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Proposition 2.2 ([1]). (Comparison principle of extremal length) For two
curve families T'y, T, if every vo € I's contains a 1 € 'y, then

A(TL) < A(T,).

Proposition 2.3 ([1]). Let T' be a family of curves in D, and f an analytic
function in D such that f'(z) #0. Then

AT) < ALFIT)]

Proposition 2.4 ([9]). Suppose there exist disjoint open sets G, containing the
curves in I'y. If U,I'y, C T, then

1 1
25T S AT

Example 2.5 ([9]). Let I'y be the family of closed curves in D separating C
from C5, and I'; the family of arcs joining C7 and C3 in D. We know the
following,
27 log 1(go)
A(Fs) = 177 )‘(F]) = T - -
og p(g1)

27
Then We have the following.

Theorem 2.6. {u(f)|f € Fi} = {ulu(gr) < p < u(go)}-
Proof. Let f € Fy. Consider the family I'? of closed curves in
{wll < fw[ < p(f)}
separating {|w| = 1} from {|w| = p(f)}. Since
fTs) ={f()ly €T} C TG,

we have
2

log 1(g1)
Hence we have

= A(T,) = A(f(Ty)) > A(T)

11(g1) < p(f).
Similarly consider the family I'; of arcs in
{wll < |w| < p(f)}
joining {|w| = 1} and {Jw| = p(f)} to get the inequality
1(f) < 11(g0)-

Thus

{u(HIf € Fi} c {plplgr) < p < plgo)}-
In order to prove the converse, we may assume that D is a radial slit annulus.
That is,
Cr =A{lw| =1}, Co = {Jw| = p(g0)}
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and each Cx(3 < k < n) is a radial slit. Let [ be the length of Cy and (j be
the midpoint of the slit Cj. now, for each 0 < ¢t < 1, let D; be the annulus

{1 < |w| < p(g0)}

with (n — 2) radial slits of length ¢ - I;; with center at (; on Cj. Denote it by
Ck,+- Then, D; = D and Dy is the annulus

{1 <|w| < p(g0)}

with (n — 2) punctures. note that D is a subregion of D;.
Let g1+ be the normalized circular slit mapping on D;. Denote by f; the
restriction of g1 ; onto D. Then

fi € By

and the boundary of f;(D) consists of {|w| = 1}, {|w| = u(f:)} and (n—2) ‘cross’-
shaped slits. We assert that the outer radius p(f;) is a continuous function of ¢,

limy sy p(fe) = plg1) and limg o p(fe) = p(go)-
Let T'; be the family of closed curves in D; separating Cy from C5. Then

27
AT) = ———.
log pu(ft)
For any 0 < ¢, t/ < 1, we can easily construct a K, quasiconformal mapping
¢+ v from D, onto Dy such that
lim Kt,t’ =1.

t—t’

Since AT
MY 5\(Ty) = Ao (T0)) < KiwA(T),

£t/
we get first and second assertions.
For the proof of the last assertion, note that 'y is the family of closed curves
in the punctured annulus Dy separating C; from Cs. Then

2w
MTo) = log p1(g0)
We know that
I'y CcTy

and each

vyely—T,
crosses at least one of C ;. Then

1 1 1 1

X0 = MTo) = MTo—Ty) T AT
It is easy to see that
ATy —T4) = o0
as t — 0. Hence we get
lim u(f2) = #(90)
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3. Some boundary behavior of conformal mappings

We consider the family F,, = F,, (D) of conformal mapping f from D onto a
covering surfaces of the Riemann sphere C satisfying the following conditions
(4), (5), (6), (7) and (8). Denote by p the projection from f(D) into C. For
simplicity, we assume that C; and Cs are simple closed analytic curves and each f
is analytic on Cy U Cs.

(4) f(D) is a covering surface of C of at most n sheets.

(5) (o H(C1) = {Jw| = 1}.
(6) (pof)(z) rounds {|w| = 1} one time clockwisely as z rounds C; one time
positively with respect to D.

(7) (po [)(Ca) = {lwl = u(H)}._
(8) (po f)(z) rounds {|w| = u(f)} one time anti-clockwisely as z rounds Cy
one time positively with respect to D.

Since
F, O Fi
we have

{u(HIf € Fu} D {pli(gr) < i < plgo)}-

First, we consider a covering surface with only two boundary components.
Let Q, , be an annulus

{I1<z|<v}
with a circular slit
Lo = {((v +1)/2)e”| 0] < o}

for 0 < a < m. Sewing €, and C- lo,, along [, , crosswisely, we obtain a
covering surface {1, of C. Then

Qo
is mapped conformally onto the annulus
{1 <|w| < paw}

The outer radius f4,, is uniquely determined. We have the following properties
of fia,u-

Lemma 3.1. p,,, s a continuous function of oc. Moreover,
lim pg,, =v
a—0 ?

and

lim prg,, = 0.
a—T ?
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Proof. Since each Qavy is quasiconformally equivalent, we can prove the first
assertion by a similar argument as in Theorem 1.6. ~
Let I';, , be the family of arcs in €, joining two boundaries of €, ,. Then

log pta,v =
) — A F*
27_[_ ( a,u)

Let f"ow be the subfamily of f‘;yy consisting of arcs not crossing p~1(l,), where
p is the projection from Qa)l, into C — lo,v. Then

1 1 1 1

= < —= < —= +—= =

)‘(Fix,u) A(ng,l/) /\(F/a,u) A(F;;,V - F/a,l/)

)‘(f‘z,u - f‘ix,u) — 0

and
AT, ) —

log v
T

as @ — 0. Thus we get the second assertion. 3
In order to prove the last assertion, we note that each arc in I'}, ,, crosses

P {((v +1)/2)e’|a < 6 < 21 — a})

and that _
{(v+1)/2)e"a < 0 <21 — a}
reduces to one point as a — . O
Theorem 3.2. {u1 < 1 < p(g1)} C {u(f)|f € Fa}.
Proof. We may assume that D is the annulus
{1 <[z] < plgn)}

with circular slits. For any fixed 1 < v < p(g1), there is a covering surface QOM,
of C conformally equivalent to

{1 <lz] < ulg1)}
by Lemma 2.1. Let f be the restriction to D of the conformal mapping from

{1 <[z] < plg)}

onto

Then

Next we give an upper bound.

Theorem 3.3. If f € F, then

w(f) < p(go)"
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Proof. Let T* be the family of arcs in f(D) joining C7 and Cy. Define the density

5(¢) on f(D) so that
R O
A ]

if p(¢) € {1 < |2| < u(f)} and p(¢) = 0 otherwise. Then for any arcs 7 € T'*,
[ 5() | = tog (7).
5

And

// 5%(¢) dédn < 2mnlog p(f).
f(D)
Hence

log ulgo) _ ey » Jogf).

27 2mn
Here, we assume that D has at least 3 boundary components, that is, n > 3.

Then, we say that a conformal mapping f belongs to F] if f e F, and if
(9) po f(D) C {1 <w| < p(f)}-

Clearly
F,D>F,D>F.
Further, if
feF,
then

w(f) < p(go)"
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