A NOTE ON EXTREMAL LENGTH AND CONFORMAL IMBEDDINGS ${ }^{\dagger}$

BOHYUN CHUNG*

Abstract

Let D be a plane domain whose boundary consists of n components and C_{1}, C_{2} two boundary components of D. We consider the family F_{1} of conformal mappings f satisfying $f(D) \subset\{1<|w|<\mu(f)\}, f\left(C_{1}\right)=$ $\{|w|=1\}, f\left(C_{2}\right)=\{|w|=\mu(f)\}$. There are conformal mappings $g_{0}, g_{1}(\in$ F_{1}) onto a radial and a circular slit annulus respectively. We obtain the following theorem, $$
\left\{\mu(f) \mid f \in F_{1}\right\}=\left\{\mu \mid \mu\left(g_{1}\right) \leq \mu \leq \mu\left(g_{0}\right)\right\}
$$

And we consider the family F_{n} of conformal mappings \tilde{f} from D onto a covering surfaces of the Riemann sphere satisfying some conditions. We obtain the following theorems, $$
\left\{\mu \mid 1<\mu \leq \mu\left(g_{1}\right)\right\} \subset\left\{\mu(\tilde{f}) \mid \tilde{f} \in F_{2}\right\} \subset\left\{\mu(\tilde{f}) \mid \tilde{f} \in F_{n}\right\}
$$ and $\mu(\tilde{f}) \leq \mu\left(g_{0}\right)^{n}$.

AMS Mathematics Subject Classification : 30C20, 30C62.
Key word and phrases : Extremal length, conformal imbedding.

1. Introduction

The method of extremal length is a useful tool in a wide variety of areas. Especially, it has been successfully applied to conformal mappings, analytic functions. Extremal length was introduced as a conformally invariant measure of curve families. This development appeared in Ahlfors and Beurling[7].

Let D be a plane domain whose boundary consists of non-degenerate $n(2 \leq$ $n<\infty)$ components. Let C_{1}, C_{2} be two boundary components of D.
We consider the family $F_{1}=F_{1}(D)$ of univalent conformal mappings f on D satisfying the following conditions (1), (2) and (3).
(1) $f(D) \subset\{1<|w|<\mu(f)\}$

[^0](2) $f\left(C_{1}\right)=\{|w|=1\}$
(3) $f\left(C_{2}\right)=\{|w|=\mu(f)\}$

Condition (2) (resp. (3)) means that $z \rightarrow C_{1}$ (resp. C_{2}) if and only if $f(z) \rightarrow\{|w|=1\}$ (resp. $\{|w|=\mu(f)\})$.

In the family F_{1}, there are conformal mappings g_{0} and g_{1} onto a radial and a circular slit annulus respectively. That is,

$$
\begin{gathered}
g_{0}(D) \subset\left\{1<|w|<\mu\left(g_{0}\right)\right\} \\
g_{0}\left(C_{1}\right)=\{|w|=1\}, \quad g_{0}\left(C_{2}\right)=\left\{|w|=\mu\left(g_{0}\right)\right\}
\end{gathered}
$$

and

$$
\left\{1<|w|<\mu\left(g_{0}\right)\right\}-g_{0}(D)
$$

consists of $(n-2)$ concentric radial slits. Similarly

$$
\left\{1<|w|<\mu\left(g_{1}\right)\right\}-g_{1}(D)
$$

consists of $(n-2)$ concentric circular slits.
Since g_{0} and g_{1} are determined uniquely up to rotations about the origin, $\mu\left(g_{0}\right)$ and $\mu\left(g_{1}\right)$ are determined uniquely. We say that g_{0} (resp. $\left.g_{1}\right)$ is the normalized radial (resp. circular) slit mapping on D. Extremal properties of g_{0} and g_{1} imply

$$
\left\{\mu(f) \mid f \in F_{1}\right\} \subset\left\{\mu \mid \mu\left(g_{1}\right) \leq \mu \leq \mu\left(g_{0}\right)\right\} .
$$

(See [11] for the extremal properties.)
In this note, we use the method of extremal length of a curve family to the boundary behavior of conformal mappings. we will prove that

$$
\left\{\mu(f) \mid f \in F_{1}\right\}=\left\{\mu \mid \mu\left(g_{1}\right) \leq \mu \leq \mu\left(g_{0}\right)\right\} .
$$

And we consider conformal mappings \tilde{f} from D onto a covering surfaces of the Riemann sphere such that

$$
\tilde{f}\left(C_{1}\right)=\{|w|=1\}, \quad \tilde{f}\left(C_{2}\right)=\{|w|=\mu(\tilde{f})\}
$$

(see section 2 for the definition). We shall study the range of $\mu(\tilde{f})$.

2. Extremal length and extremal property

Let Γ be a family whose elements γ are curves in a domain D and $\rho(z)$ a non-negative Borel measurable function. For γ and D, we have

$$
L(\gamma, \rho)=\int_{\gamma} \rho|d z|, \quad A(D, \rho)=\iint_{D} \rho^{2} d x d y
$$

We introduce the minimum length

$$
L(\Gamma, \rho)=\inf _{\gamma \in \Gamma} L(\gamma, \rho) .
$$

Definition 2.1 ([1]). The extremal length of Γ in D is defined by

$$
\lambda(\Gamma)=\sup _{\rho} \frac{L^{2}(\Gamma, \rho)}{A(D, \rho)} .
$$

Proposition 2.2 ([1]). (Comparison principle of extremal length) For two curve families Γ_{1}, Γ_{2}, if every $\gamma_{2} \in \Gamma_{2}$ contains a $\gamma_{1} \in \Gamma_{1}$, then

$$
\lambda\left(\Gamma_{1}\right) \leq \lambda\left(\Gamma_{2}\right)
$$

Proposition 2.3 ([1]). Let Γ be a family of curves in D, and f an analytic function in D such that $f^{\prime}(z) \neq 0$. Then

$$
\lambda(\Gamma) \leq \lambda[f(\Gamma)]
$$

Proposition 2.4 ([9]). Suppose there exist disjoint open sets G_{n} containing the curves in Γ_{n}. If $\cup_{n} \Gamma_{n} \subset \Gamma$, then

$$
\sum_{n} \frac{1}{\lambda\left(\Gamma_{n}\right)} \leq \frac{1}{\lambda(\Gamma)}
$$

Example 2.5 ([9]). Let Γ_{s} be the family of closed curves in D separating C_{1} from C_{2}, and Γ_{j} the family of arcs joining C_{1} and C_{2} in D. We know the following,

$$
\lambda\left(\Gamma_{s}\right)=\frac{2 \pi}{\log \mu\left(g_{1}\right)}, \quad \lambda\left(\Gamma_{j}\right)=\frac{\log \mu\left(g_{0}\right)}{2 \pi}
$$

Then We have the following.
Theorem 2.6. $\left\{\mu(f) \mid f \in F_{1}\right\}=\left\{\mu \mid \mu\left(g_{1}\right) \leq \mu \leq \mu\left(g_{0}\right)\right\}$.
Proof. Let $f \in F_{1}$. Consider the family Γ_{s}^{*} of closed curves in

$$
\{w|1<|w|<\mu(f)\}
$$

separating $\{|w|=1\}$ from $\{|w|=\mu(f)\}$. Since

$$
f\left(\Gamma_{s}\right)=\left\{f(\gamma) \mid \gamma \in \Gamma_{s}\right\} \subset \Gamma_{s}^{*}
$$

we have

$$
\frac{2 \pi}{\log \mu\left(g_{1}\right)}=\lambda\left(\Gamma_{s}\right)=\lambda\left(f\left(\Gamma_{s}\right)\right) \geq \lambda\left(\Gamma_{s}^{*}\right)=\frac{2 \pi}{\log \mu(f)}
$$

Hence we have

$$
\mu\left(g_{1}\right) \leq \mu(f)
$$

Similarly consider the family Γ_{j}^{*} of arcs in

$$
\{w|1<|w|<\mu(f)\}
$$

joining $\{|w|=1\}$ and $\{|w|=\mu(f)\}$ to get the inequality

$$
\mu(f) \leq \mu\left(g_{0}\right)
$$

Thus

$$
\left\{\mu(f) \mid f \in F_{1}\right\} \subset\left\{\mu \mid \mu\left(g_{1}\right) \leq \mu \leq \mu\left(g_{0}\right)\right\}
$$

In order to prove the converse, we may assume that D is a radial slit annulus. That is,

$$
C_{1}=\{|w|=1\}, C_{2}=\left\{|w|=\mu\left(g_{0}\right)\right\}
$$

and each $C_{k}(3 \leq k \leq n)$ is a radial slit. Let l_{k} be the length of C_{k} and ζ_{k} be the midpoint of the slit C_{k}. now, for each $0<t \leq 1$, let D_{t} be the annulus

$$
\left\{1<|w|<\mu\left(g_{0}\right)\right\}
$$

with $(n-2)$ radial slits of length $t \cdot l_{k}$ with center at ζ_{k} on C_{k}. Denote it by $C_{k, t}$. Then, $D_{1}=D$ and D_{0} is the annulus

$$
\left\{1<|w|<\mu\left(g_{0}\right)\right\}
$$

with $(n-2)$ punctures. note that D is a subregion of D_{t}.
Let $g_{1, t}$ be the normalized circular slit mapping on D_{t}. Denote by f_{t} the restriction of $g_{1, t}$ onto D. Then

$$
f_{t} \in F_{1}
$$

and the boundary of $f_{t}(D)$ consists of $\{|w|=1\},\left\{|w|=\mu\left(f_{t}\right)\right\}$ and $(n-2)$ 'cross'shaped slits. We assert that the outer radius $\mu\left(f_{t}\right)$ is a continuous function of t, $\lim _{t \rightarrow 1} \mu\left(f_{t}\right)=\mu\left(g_{1}\right)$ and $\lim _{t \rightarrow 0} \mu\left(f_{t}\right)=\mu\left(g_{0}\right)$.

Let Γ_{t} be the family of closed curves in D_{t} separating C_{1} from C_{2}. Then

$$
\lambda\left(\Gamma_{t}\right)=\frac{2 \pi}{\log \mu\left(f_{t}\right)}
$$

For any $0<t, t^{\prime} \leq 1$, we can easily construct a $K_{t, t^{\prime}}$ quasiconformal mapping $\phi_{t, t^{\prime}}$ from D_{t} onto $D_{t^{\prime}}$ such that

$$
\lim _{t \rightarrow t^{\prime}} K_{t, t^{\prime}}=1
$$

Since

$$
\frac{\lambda\left(\Gamma_{t}\right)}{K_{t, t^{\prime}}} \leq \lambda\left(\Gamma_{t^{\prime}}\right)=\lambda\left(\phi_{t, t^{\prime}}\left(\Gamma_{t}\right)\right) \leq K_{t, t^{\prime}} \lambda\left(\Gamma_{t}\right)
$$

we get first and second assertions.
For the proof of the last assertion, note that Γ_{0} is the family of closed curves in the punctured annulus D_{0} separating C_{1} from C_{2}. Then

$$
\lambda\left(\Gamma_{0}\right)=\frac{2 \pi}{\log \mu\left(g_{0}\right)}
$$

We know that

$$
\Gamma_{t} \subset \Gamma_{0}
$$

and each

$$
\gamma \in \Gamma_{0}-\Gamma_{t}
$$

crosses at least one of $C_{k, t}$. Then

$$
\frac{1}{\lambda\left(\Gamma_{t}\right)} \leq \frac{1}{\lambda\left(\Gamma_{0}\right)} \leq \frac{1}{\lambda\left(\Gamma_{0}-\Gamma_{t}\right)}+\frac{1}{\lambda\left(\Gamma_{t}\right)}
$$

It is easy to see that

$$
\lambda\left(\Gamma_{0}-\Gamma_{t}\right) \rightarrow \infty
$$

as $t \rightarrow 0$. Hence we get

$$
\lim _{t \rightarrow 0} \mu\left(f_{t}\right)=\mu\left(g_{0}\right)
$$

3. Some boundary behavior of conformal mappings

We consider the family $F_{n}=F_{n}(D)$ of conformal mapping \tilde{f} from D onto a covering surfaces of the Riemann sphere $\hat{\mathbf{C}}$ satisfying the following conditions (4), (5), (6), (7) and (8). Denote by p the projection from $\tilde{f}(D)$ into $\hat{\mathbf{C}}$. For simplicity, we assume that C_{1} and C_{2} are simple closed analytic curves and each \tilde{f} is analytic on $C_{1} \cup C_{2}$.
(4) $\tilde{f}(D)$ is a covering surface of $\hat{\mathbf{C}}$ of at most n sheets.
(5) $(p \circ \tilde{f})\left(C_{1}\right)=\{|w|=1\}$.
(6) $(p \circ \tilde{f})(z)$ rounds $\{|w|=1\}$ one time clockwisely as z rounds C_{1} one time positively with respect to D.
(7) $(p \circ \tilde{f})\left(C_{2}\right)=\{|w|=\mu(\tilde{f})\}$.
(8) $(p \circ \tilde{f})(z)$ rounds $\{|w|=\mu(\tilde{f})\}$ one time anti-clockwisely as z rounds C_{2} one time positively with respect to D.
Since

$$
F_{n} \supset F_{1}
$$

we have

$$
\left\{\mu(\tilde{f}) \mid \tilde{f} \in F_{n}\right\} \supset\left\{\mu \mid \mu\left(g_{1}\right) \leq \mu \leq \mu\left(g_{0}\right)\right\}
$$

First, we consider a covering surface with only two boundary components. Let $\Omega_{\alpha, \nu}$ be an annulus

$$
\{1<|z|<\nu\}
$$

with a circular slit

$$
l_{\alpha, \nu}=\left\{((\nu+1) / 2) e^{i \theta}| | \theta \mid \leq \alpha\right\}
$$

for $0<\alpha<\pi$. Sewing $\Omega_{\alpha, \nu}$ and $\hat{\mathbf{C}}-l_{\alpha, \nu}$ along $l_{\alpha, \nu}$ crosswisely, we obtain a covering surface $\tilde{\Omega}_{\alpha, \nu}$ of $\hat{\mathbf{C}}$. Then

$$
\tilde{\Omega}_{\alpha, \nu}
$$

is mapped conformally onto the annulus

$$
\left\{1<|w|<\mu_{\alpha, \nu}\right\}
$$

The outer radius $\mu_{\alpha, \nu}$ is uniquely determined. We have the following properties of $\mu_{\alpha, \nu}$.

Lemma 3.1. $\mu_{\alpha, \nu}$ is a continuous function of α. Moreover,

$$
\lim _{\alpha \rightarrow 0} \mu_{\alpha, \nu}=\nu
$$

and

$$
\lim _{\alpha \rightarrow \pi} \mu_{\alpha, \nu}=\infty
$$

Proof. Since each $\tilde{\Omega}_{\alpha, \nu}$ is quasiconformally equivalent, we can prove the first assertion by a similar argument as in Theorem 1.6.

Let $\tilde{\Gamma}_{\alpha, \nu}^{*}$ be the family of arcs in $\tilde{\Omega}_{\alpha, \nu}$ joining two boundaries of $\tilde{\Omega}_{\alpha, \nu}$. Then

$$
\frac{\log \mu_{\alpha, \nu}}{2 \pi}=\lambda\left(\tilde{\Gamma}_{\alpha, \nu}^{*}\right)
$$

Let $\tilde{\Gamma}_{\alpha, \nu}^{\prime}$ be the subfamily of $\tilde{\Gamma}_{\alpha, \nu}^{*}$ consisting of arcs not crossing $p^{-1}\left(l_{\alpha}\right)$, where p is the projection from $\tilde{\Omega}_{\alpha, \nu}$ into $\hat{\mathbf{C}}-l_{\alpha, \nu}$. Then

$$
\begin{gathered}
\frac{1}{\lambda\left(\tilde{\Gamma}_{\alpha, \nu}^{\prime}\right)} \leq \frac{1}{\lambda\left(\tilde{\Gamma}_{\alpha, \nu}^{*}\right)} \leq \frac{1}{\lambda\left(\tilde{\Gamma}_{\alpha, \nu}^{\prime}\right)}+\frac{1}{\lambda\left(\tilde{\Gamma}_{\alpha, \nu}^{*}-\tilde{\Gamma}_{\alpha, \nu}^{\prime}\right)} \\
\lambda\left(\tilde{\Gamma}_{\alpha, \nu}^{*}-\tilde{\Gamma}_{\alpha, \nu}^{\prime}\right) \rightarrow \infty
\end{gathered}
$$

and

$$
\lambda\left(\tilde{\Gamma}_{\alpha, \nu}^{\prime}\right) \rightarrow \frac{\log \nu}{2 \pi}
$$

as $\alpha \rightarrow 0$. Thus we get the second assertion.
In order to prove the last assertion, we note that each arc in $\tilde{\Gamma}_{\alpha, \nu}^{*}$ crosses

$$
p^{-1}\left(\left\{((\nu+1) / 2) e^{i \theta} \mid \alpha \leq \theta \leq 2 \pi-\alpha\right\}\right)
$$

and that

$$
\left\{((\nu+1) / 2) e^{i \theta} \mid \alpha \leq \theta \leq 2 \pi-\alpha\right\}
$$

reduces to one point as $\alpha \rightarrow \pi$.
Theorem 3.2. $\left\{\mu \mid 1<\mu \leq \mu\left(g_{1}\right)\right\} \subset\left\{\mu(\tilde{f}) \mid \tilde{f} \in F_{2}\right\}$.
Proof. We may assume that D is the annulus

$$
\left\{1<|z|<\mu\left(g_{1}\right)\right\}
$$

with circular slits. For any fixed $1<\nu<\mu\left(g_{1}\right)$, there is a covering surface $\tilde{\Omega}_{\alpha, \nu}$ of $\hat{\mathbf{C}}$ conformally equivalent to

$$
\left\{1<|z|<\mu\left(g_{1}\right)\right\}
$$

by Lemma 2.1. Let \tilde{f} be the restriction to D of the conformal mapping from

$$
\left\{1<|z|<\mu\left(g_{1}\right)\right\}
$$

onto

$$
\tilde{\Omega}_{\alpha, \nu}
$$

Then

$$
\mu(\tilde{f})=\nu
$$

Next we give an upper bound.
Theorem 3.3. If $\tilde{f} \in F_{n}$ then

$$
\mu(\tilde{f}) \leq \mu\left(g_{0}\right)^{n}
$$

Proof. Let $\tilde{\Gamma}^{*}$ be the family of arcs in $\tilde{f}(D)$ joining C_{1} and C_{2}. Define the density $\tilde{\rho}(\zeta)$ on $\tilde{f}(D)$ so that

$$
\tilde{\rho}(\zeta)=\frac{1}{|p(\zeta)|}
$$

if $p(\zeta) \in\{1<|z|<\mu(\tilde{f})\}$ and $\tilde{\rho}(\zeta)=0$ otherwise. Then for any $\operatorname{arcs} \tilde{\gamma} \in \tilde{\Gamma}^{*}$,

$$
\int_{\tilde{\gamma}} \tilde{\rho}(\zeta)|d \zeta| \geq \log \mu(\tilde{f})
$$

And

$$
\iint_{\tilde{f}(D)} \tilde{\rho}^{2}(\zeta) d \xi d \eta \leq 2 \pi n \log \mu(\tilde{f})
$$

Hence

$$
\frac{\log \mu\left(g_{0}\right)}{2 \pi}=\lambda\left(\tilde{\Gamma}^{*}\right) \geq \frac{\log \mu(\tilde{f})}{2 \pi n}
$$

Here, we assume that D has at least 3 boundary components, that is, $n \geq 3$. Then, we say that a conformal mapping \tilde{f} belongs to F_{n}^{\prime} if $\tilde{f} \in F_{n}$ and if
(9) $p \circ \tilde{f}(D) \subset\{1<|w|<\mu(\tilde{f})\}$.

Clearly

$$
F_{n} \supset F_{n}^{\prime} \supset F_{1} .
$$

Further, if

$$
\tilde{f} \in F_{n}^{\prime}
$$

then

$$
\mu(\tilde{f}) \leq \mu\left(g_{0}\right)^{n}
$$

References

1. L.V. Ahlfors, Conformal Invariants. Topics in Geometric Function Theory, McGraw-Hill, New York, 1973.
2. B. Rodin, The method of extremal length, Bull. Amer. Math. Soc., 80 (1974), 587-606.
3. R. E. Thurman, Bridged extremal distance and maximal capacity, Pacific J. Math., 176 (1996), no. 2, 507-528.
4. Bohyun Chung, A note on geometric applications of extremal length (I), J. Appl. Math. and Computing., 18 (2005), no. 1-2, 603-611.
5. Bohyun Chung, Some applications of extremal length to analytic functions, Commn. Korean Math. Soc., 21 (2006), no. 1, 135-143.
6. Bohyun Chung, Some applications of extremal length to conformal imbeddings, J. Chungcheong Math. Soc., 22 (2009), no. 2, 507-528.
7. L. V. Ahlfors and A. Beurling, Conformal invariants and function-theoretic null-sets, Acta. Math. 83 (1960), 101-129.
8. Jenkins, J.A., Some results related extremal length, Ann. of Math. Studies 30 (1953), 87-94.
9. M. Ohtsuka, Dirichlet Problem, Extremal Length, and Prime Ends, Van Nostrand Reinhold, New York, 1970.
10. M. D. O'neill and R. E. Thurman, Extremal problems for Robin capacity, Complex Variables Theory and Applications, 41 (2000).
11. L. Sario and K. Oikawa, Capacity Functions, Springer-Verlag, New York, 1969.
12. Shen Yu-Liang, Extremal problems for quasiconformal mappings, Journal of Mathematical Analysis and Applications, 247 (2000), 27-44.

Bohyun Chung received his Ph.D. in mathematics at Hongik University in 1991. Since 1991, he has been in Mathematics Section(College of Science and Technology) at Hongik University as a professor. His research interests are Functions of a complex variable and Geometric function theory.
Mathematics section, College of Science and Technology, Hongik University, Chochiwon 339-701, Rep. of Korea
e-mail: bohyun@hongik.ac.kr

[^0]: Received March 9, 2010. Accepted May 23, 2010. *Corresponding author.
 ${ }^{\dagger}$ This work was supported by 2008 Hongik University Research Fund.
 (c) 2010 Korean SIGCAM and KSCAM.

