
J. Appl. Math. & Informatics Vol. 28(2010), No. 5 - 6, pp. 1315-1322
Website: http://www.kcam.biz

A NOTE ON EXTREMAL LENGTH AND CONFORMAL

IMBEDDINGS†

BOHYUN CHUNG∗

Abstract. Let D be a plane domain whose boundary consists of n compo-
nents and C1, C2 two boundary components of D. We consider the family
F1 of conformal mappings f satisfying f(D) ⊂ {1 < |w| < µ(f)}, f(C1) =
{|w| = 1}, f(C2) = {|w| = µ(f)}. There are conformal mappings g0, g1(∈
F1) onto a radial and a circular slit annulus respectively. We obtain the
following theorem,

{µ(f)|f ∈ F1} = {µ|µ(g1) ≤ µ ≤ µ(g0)}.
And we consider the family Fn of conformal mappings f̃ from D onto a
covering surfaces of the Riemann sphere satisfying some conditions. We
obtain the following theorems,

{µ|1 < µ ≤ µ(g1)} ⊂ {µ(f̃)|f̃ ∈ F2} ⊂ {µ(f̃)|f̃ ∈ Fn}
and µ(f̃) ≤ µ(g0)n.
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Key word and phrases : Extremal length, conformal imbedding.

1. Introduction

The method of extremal length is a useful tool in a wide variety of areas. Es-
pecially, it has been successfully applied to conformal mappings, analytic func-
tions. Extremal length was introduced as a conformally invariant measure of
curve families. This development appeared in Ahlfors and Beurling[7].

Let D be a plane domain whose boundary consists of non-degenerate n(2 ≤
n < ∞) components. Let C1, C2 be two boundary components of D.
We consider the family F1 = F1(D) of univalent conformal mappings f on D
satisfying the following conditions (1), (2) and (3).

(1) f(D) ⊂ {1 < |w| < µ(f)}
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(2) f(C1) = {|w| = 1}
(3) f(C2) = {|w| = µ(f)}

Condition (2) (resp. (3)) means that z → C1 (resp. C2 ) if and only if
f(z) → {|w| = 1} (resp. {|w| = µ(f)}).

In the family F1, there are conformal mappings g0 and g1 onto a radial and
a circular slit annulus respectively. That is,

g0(D) ⊂ {1 < |w| < µ(g0)}
g0(C1) = {|w| = 1}, g0(C2) = {|w| = µ(g0)}

and
{1 < |w| < µ(g0)} − g0(D)

consists of (n− 2) concentric radial slits. Similarly

{1 < |w| < µ(g1)} − g1(D)

consists of (n− 2) concentric circular slits.
Since g0 and g1 are determined uniquely up to rotations about the origin, µ(g0)

and µ(g1) are determined uniquely. We say that g0(resp. g1) is the normalized
radial (resp. circular) slit mapping on D. Extremal properties of g0 and g1
imply

{µ(f)|f ∈ F1} ⊂ {µ|µ(g1) ≤ µ ≤ µ(g0)}.
(See [11] for the extremal properties.)

In this note, we use the method of extremal length of a curve family to the
boundary behavior of conformal mappings. we will prove that

{µ(f)|f ∈ F1} = {µ|µ(g1) ≤ µ ≤ µ(g0)}.
And we consider conformal mappings f̃ from D onto a covering surfaces of

the Riemann sphere such that

f̃(C1) = {|w| = 1}, f̃(C2) = {|w| = µ(f̃)}
(see section 2 for the definition). We shall study the range of µ(f̃).

2. Extremal length and extremal property

Let Γ be a family whose elements γ are curves in a domain D and ρ(z) a
non-negative Borel measurable function. For γ and D, we have

L(γ, ρ) =

∫

γ

ρ |dz|, A(D, ρ) =

∫∫

D

ρ2 dx dy .

We introduce the minimum length

L(Γ, ρ) = inf
γ∈Γ

L(γ, ρ).

Definition 2.1 ([1]). The extremal length of Γ in D is defined by

λ(Γ) = sup
ρ

L2(Γ, ρ)

A(D, ρ)
.
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Proposition 2.2 ([1]). (Comparison principle of extremal length) For two
curve families Γ1, Γ2, if every γ2 ∈ Γ2 contains a γ1 ∈ Γ1, then

λ(Γ1) ≤ λ(Γ2) .

Proposition 2.3 ([1]). Let Γ be a family of curves in D, and f an analytic
function in D such that f ′(z) 6= 0. Then

λ(Γ) ≤ λ[f(Γ)] .

Proposition 2.4 ([9]). Suppose there exist disjoint open sets Gn containing the
curves in Γn. If ∪nΓn ⊂ Γ, then

∑
n

1

λ(Γn)
≤ 1

λ(Γ)
.

Example 2.5 ([9]). Let Γs be the family of closed curves in D separating C1

from C2, and Γj the family of arcs joining C1 and C2 in D. We know the
following,

λ(Γs) =
2π

log µ(g1)
, λ(Γj) =

logµ(g0)

2π
.

Then We have the following.

Theorem 2.6. {µ(f)|f ∈ F1} = {µ|µ(g1) ≤ µ ≤ µ(g0)}.
Proof. Let f ∈ F1. Consider the family Γ∗

s of closed curves in

{w|1 < |w| < µ(f)}
separating {|w| = 1} from {|w| = µ(f)}. Since

f(Γs) = {f(γ)|γ ∈ Γs} ⊂ Γ∗
s,

we have
2π

logµ(g1)
= λ(Γs) = λ(f(Γs)) ≥ λ(Γ∗

s) =
2π

log µ(f)

Hence we have

µ(g1) ≤ µ(f).

Similarly consider the family Γ∗
j of arcs in

{w|1 < |w| < µ(f)}
joining {|w| = 1} and {|w| = µ(f)} to get the inequality

µ(f) ≤ µ(g0).

Thus

{µ(f)|f ∈ F1} ⊂ {µ|µ(g1) ≤ µ ≤ µ(g0)}.
In order to prove the converse, we may assume that D is a radial slit annulus.

That is,

C1 = {|w| = 1}, C2 = {|w| = µ(g0)}
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and each Ck(3 ≤ k ≤ n) is a radial slit. Let lk be the length of Ck and ζk be
the midpoint of the slit Ck. now, for each 0 < t ≤ 1, let Dt be the annulus

{1 < |w| < µ(g0)}
with (n − 2) radial slits of length t · lk with center at ζk on Ck. Denote it by
Ck,t. Then, D1 = D and D0 is the annulus

{1 < |w| < µ(g0)}
with (n− 2) punctures. note that D is a subregion of Dt.

Let g1,t be the normalized circular slit mapping on Dt. Denote by ft the
restriction of g1,t onto D. Then

ft ∈ F1

and the boundary of ft(D) consists of {|w| = 1}, {|w| = µ(ft)} and (n−2) ‘cross’-
shaped slits. We assert that the outer radius µ(ft) is a continuous function of t,
limt→1 µ(ft) = µ(g1) and limt→0 µ(ft) = µ(g0).

Let Γt be the family of closed curves in Dt separating C1 from C2. Then

λ(Γt) =
2π

logµ(ft)
.

For any 0 < t, t′ ≤ 1, we can easily construct a Kt,t′ quasiconformal mapping
φt,t′ from Dt onto Dt′ such that

lim
t→t′

Kt,t′ = 1.

Since
λ(Γt)

Kt,t′
≤ λ(Γt′) = λ(φt,t′(Γt)) ≤ Kt,t′λ(Γt),

we get first and second assertions.
For the proof of the last assertion, note that Γ0 is the family of closed curves

in the punctured annulus D0 separating C1 from C2. Then

λ(Γ0) =
2π

log µ(g0)
.

We know that
Γt ⊂ Γ0

and each
γ ∈ Γ0 − Γt

crosses at least one of Ck,t. Then

1

λ(Γt)
≤ 1

λ(Γ0)
≤ 1

λ(Γ0 − Γt)
+

1

λ(Γt)
.

It is easy to see that
λ(Γ0 − Γt) → ∞

as t → 0. Hence we get
lim
t→0

µ(ft) = µ(g0)
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3. Some boundary behavior of conformal mappings

We consider the family Fn = Fn(D) of conformal mapping f̃ from D onto a

covering surfaces of the Riemann sphere Ĉ satisfying the following conditions
(4), (5), (6), (7) and (8). Denote by p the projection from f̃(D) into Ĉ. For

simplicity, we assume that C1 and C2 are simple closed analytic curves and eachf̃
is analytic on C1 ∪ C2.

(4) f̃(D) is a covering surface of Ĉ of at most n sheets.

(5) (p ◦ f̃)(C1) = {|w| = 1}.
(6) (p◦ f̃)(z) rounds {|w| = 1} one time clockwisely as z rounds C1 one time

positively with respect to D.
(7) (p ◦ f̃)(C2) = {|w| = µ(f̃)}.
(8) (p ◦ f̃)(z) rounds {|w| = µ(f̃)} one time anti-clockwisely as z rounds C2

one time positively with respect to D.

Since

Fn ⊃ F1

we have

{µ(f̃)|f̃ ∈ Fn} ⊃ {µ|µ(g1) ≤ µ ≤ µ(g0)}.
First, we consider a covering surface with only two boundary components.

Let Ωα,ν be an annulus

{1 < |z| < ν}
with a circular slit

lα,ν = {((ν + 1)/2)eiθ| |θ| ≤ α}
for 0 < α < π. Sewing Ωα,ν and Ĉ − lα,ν along lα,ν crosswisely, we obtain a

covering surface Ω̃α,ν of Ĉ. Then

Ω̃α,ν

is mapped conformally onto the annulus

{1 < |w| < µα,ν}.
The outer radius µα,ν is uniquely determined. We have the following properties
of µα,ν .

Lemma 3.1. µα,ν is a continuous function of α. Moreover,

lim
α→0

µα,ν = ν

and

lim
α→π

µα,ν = ∞.
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Proof. Since each Ω̃α,ν is quasiconformally equivalent, we can prove the first
assertion by a similar argument as in Theorem 1.6.

Let Γ̃∗
α,ν be the family of arcs in Ω̃α,ν joining two boundaries of Ω̃α,ν . Then

log µα,ν

2π
= λ(Γ̃∗

α,ν)

Let Γ̃′
α,ν be the subfamily of Γ̃∗

α,ν consisting of arcs not crossing p−1(lα), where

p is the projection from Ω̃α,ν into Ĉ− lα,ν . Then

1

λ(Γ̃′
α,ν)

≤ 1

λ(Γ̃∗
α,ν)

≤ 1

λ(Γ̃′
α,ν)

+
1

λ(Γ̃∗
α,ν − Γ̃′

α,ν)

λ(Γ̃∗
α,ν − Γ̃′

α,ν) → ∞
and

λ(Γ̃′
α,ν) →

log ν

2π
as α → 0. Thus we get the second assertion.

In order to prove the last assertion, we note that each arc in Γ̃∗
α,ν crosses

p−1({((ν + 1)/2)eiθ|α ≤ θ ≤ 2π − α})
and that

{((ν + 1)/2)eiθ|α ≤ θ ≤ 2π − α}
reduces to one point as α → π. ¤

Theorem 3.2. {µ|1 < µ ≤ µ(g1)} ⊂ {µ(f̃)|f̃ ∈ F2}.
Proof. We may assume that D is the annulus

{1 < |z| < µ(g1)}
with circular slits. For any fixed 1 < ν < µ(g1), there is a covering surface Ω̃α,ν

of Ĉ conformally equivalent to

{1 < |z| < µ(g1)}
by Lemma 2.1. Let f̃ be the restriction to D of the conformal mapping from

{1 < |z| < µ(g1)}
onto

Ω̃α,ν

Then
µ(f̃) = ν

¤

Next we give an upper bound.

Theorem 3.3. If f̃ ∈ Fn then

µ(f̃) ≤ µ(g0)
n
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Proof. Let Γ̃∗ be the family of arcs in f̃(D) joining C1 and C2. Define the density

ρ̃(ζ) on f̃(D) so that

ρ̃(ζ) =
1

|p(ζ)|
if p(ζ) ∈ {1 < |z| < µ(f̃)} and ρ̃(ζ) = 0 otherwise. Then for any arcs γ̃ ∈ Γ̃∗,∫

γ̃

ρ̃(ζ) |dζ| ≥ log µ(f̃).

And ∫∫

f̃(D)

ρ̃2(ζ) dξdη ≤ 2πn log µ(f̃).

Hence
log µ(g0)

2π
= λ(Γ̃∗) ≥ log µ(f̃)

2πn
.

Here, we assume that D has at least 3 boundary components, that is, n ≥ 3.
Then, we say that a conformal mapping f̃ belongs to F ′

n if f̃ ∈ Fn and if

(9) p ◦ f̃(D) ⊂ {1 < |w| < µ(f̃)}.
Clearly

Fn ⊃ F ′
n ⊃ F1.

Further, if
f̃ ∈ F ′

n

then
µ(f̃) ≤ µ(g0)

n

¤
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