• 제목/요약/키워드: tf-idf

검색결과 352건 처리시간 0.024초

링크드 오픈 데이터에서 TF-IDF를 이용한 새로운 시맨틱 거리 측정 기법 (A New Semantic Distance Measurement Method using TF-IDF in Linked Open Data)

  • 조정길
    • 한국융합학회논문지
    • /
    • 제11권10호
    • /
    • pp.89-96
    • /
    • 2020
  • 링크드 데이터는 다양한 영역의 데이터세트를 서로 연결할 수 있는 표준 방식의 구조화된 데이터를 가능하게 한다. 그리고 링크드 오픈 데이터(LOD)의 급속한 발전에 따라 연구자들은 시맨틱 유사도 평가와 같은 특정 문제를 해결하기 위해 LOD를 이용하고 있다. 이 논문에서는 LOD-기반 추천 시스템에서 사용될 수 있는 자원 간의 링크드 데이터 시맨틱 거리를 계산하기위한 방법을 제안한다. 이 논문에서 제안된 시맨틱 거리 측정 모델은 LOD-기반 시맨틱 거리와 정보 검색 분야에서 잘 알려진 TF-IDF를 이용한 새로운 링크 가중치를 결합한 유사도 측정을 기반으로 한다. 이 논문의 접근방식의 효과성을 검증하기 위하여 DBpedia와 MovieLens의 혼합 데이터를 사용하여 LOD-기반 추천 시스템의 맥락에서 성능을 평가하였다. 실험 결과는 제안된 방법이 다른 유사한 방법과 비교하여 더 높은 정확도를 나타내었다. 또한 시맨틱 거리 계산의 범위를 넓혀서 추천 시스템의 정확도 향상에 기여하였다.

검색 질의 확장을 위한 인기도 기반 단어 가중치 측정 (A Term Weight Mensuration based on Popularity for Search Query Expansion)

  • 이정훈;전서현
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권8호
    • /
    • pp.620-628
    • /
    • 2010
  • 인터넷의 활용이 보편화 됨에 따라 사람들이 많은 정보를 웹을 통해 접할 수 있게 되었다. 정보의 양이 급격히 늘어나면서 검색 엔진은 사용자가 필요로 하지 않는 정보까지 보여주는 검색 성능의 한계를 가져왔다. 따라서 사용자는 원하는 정보를 검색하기 위해 과거보다 더 많은 시간과 노력이 필요하게 되었다. 이 연구에서는 질의 확장을 이용하여 사용자가 필요로 하는 정확한 정보를 신속하게 찾아서 제공할 수 있는 방법을 제안한다. 제안된 단어 가중치 평가방법은 검색 주제의 변동 없이 하나의 검색 주제를 검색할 경우 TF-IDF 또는 단순 인기도 측정법 보다 우수한 성능을 보인다. 또한 검색 중 주제를 변경하였을 때에도 검색 주제 변경 전과 유사한 성능으로 기존의 측정법 보다 빠르게 새로운 주제와 관련된 단어를 추출하고 정확한 가중치를 측정한다.

텍스트마이닝 기법을 활용한 한국인의 행복과 불행 탐색연구 (An Exploratory Study of Happiness and Unhappiness Among Koreans based on Text Mining Techniques)

  • 박상현;도강혁;김학영;박가은;윤진혁;김경일
    • 한국콘텐츠학회논문지
    • /
    • 제18권7호
    • /
    • pp.10-27
    • /
    • 2018
  • 본 연구에서는 텍스트 마이닝 분석을 통해 한국 사회에서 행복과 불행이 갖는 의미를 탐색하였다. 자료수집 및 분석을 위하여 온라인 뉴스 포털에서 Word2Vec과 TF-IDF 방법을 사용하여 '행복' 및 '불행' 키워드와 유사한 단어를 추출했다. 또한 K-LIWC 사전을 사용하여 행복 및 불행과 연관된 단어들의 감성 속성에 대해 알아보았다. TF-IDF 분석 결과, 행복과 불행은 사회적 요인과 해당 년도의 사회적 이슈들과 각각 높은 관련성이 있는 것으로 관찰됐다. Word2Vec 분석에서는 '희망'이 6년 연속으로 행복과 유사성이 높은 단어로 나타났다. K-LIWC 분석에서 '돈재정적이슈', '학교', '의사소통'은 행복 및 불행과 모두 관련성이 높았다. 그밖에 '몸 상태와 증상'이 불행과 높은 관련성이 있는 범주로 나타났다. 이러한 결과를 바탕으로 본 연구의 의의, 제한점 및 후속연구에 대한 필요성을 논의하였다.

HF-IFF: TF-IDF를 응용한 병증-본초 연관성(relevancy) 측정과 본초 특성의 시각화 -청강의감 방제를 대상으로- (HF-IFF: Applying TF-IDF to Measure Symptom-Medicinal Herb Relevancy and Visualize Medicinal Herb Characteristics - Studying Formulations in Cheongkangeuigam -)

  • 오준호
    • 대한본초학회지
    • /
    • 제30권3호
    • /
    • pp.63-68
    • /
    • 2015
  • Objectives : We applied the term weighting method used in the field of data search to quantify relevancy between symptoms and medicinal herbs, and, based on this, we aim to introduce a method of visualizing the characteristics of medicinal herbs. Methods : We proposed HF-IFF, an adaptation of TF-IDF, which is a term weighting measurement method adapted in the field of data search. Using this method, we deduced relevancy between symptoms and medicinal herbs In Cheongkangeuigam that was published in 1984 by organizing the medical theory of Cheongkang, Kim Younghoon, and visualized this as a graph in order to compare the characteristics of medicinal herbs used for different symptoms. Results : HF-IFF is the product of HF and IFF, where HF is the frequency of the relevant medicinal herb for a set of symptoms, and IFF is the inverse of the number of formulations (FF) containing that herb. A total of 251 types of medicinal herb are used in Cheongkangeuigam, and 1538 formulations are classified according to 67 types of symptom. The overall mean for HF-IFF was 0.491, with a maximum of 4.566 and a minimum of 0.013. Conclusions : In spite of several limitations, we were able to use HF-IFF to measure relevancy between symptoms and medicinal herbs, with formulations as an intermediate. We were able to use the quantified results to visually express the characteristics of the herbs used for symptoms by bubble chart and word-cloud from HF-IFF.

공격 메일 식별을 위한 비정형 데이터를 사용한 유전자 알고리즘 기반의 특징선택 알고리즘 (Feature-selection algorithm based on genetic algorithms using unstructured data for attack mail identification)

  • 홍성삼;김동욱;한명묵
    • 인터넷정보학회논문지
    • /
    • 제20권1호
    • /
    • pp.1-10
    • /
    • 2019
  • 빅 데이터에서 텍스트 마이닝은 많은 수의 데이터로부터 많은 특징 추출하기 때문에, 클러스터링 및 분류 과정의 계산 복잡도가 높고 분석결과의 신뢰성이 낮아질 수 있다. 특히 텍스트마이닝 과정을 통해 얻는 Term document matrix는 term과 문서간의 특징들을 표현하고 있지만, 희소행렬 형태를 보이게 된다. 본 논문에서는 탐지모델을 위해 텍스트마이닝에서 개선된 GA(Genetic Algorithm)을 이용한 특징 추출 방법을 설계하였다. TF-IDF는 특징 추출에서 문서와 용어간의 관계를 반영하는데 사용된다. 반복과정을 통해 사전에 미리 결정된 만큼의 특징을 선택한다. 또한 탐지모델의 성능 향상을 위해 sparsity score(희소성 점수)를 사용하였다. 스팸메일 세트의 희소성이 높으면 탐지모델의 성능이 낮아져 최적화된 탐지 모델을 찾기가 어렵다. 우리는 fitness function에서 s(F)를 사용하여 희소성이 낮고 TF-IDF 점수가 높은 탐지모델을 찾았다. 또한 제안된 알고리즘을 텍스트 분류 실험에 적용하여 성능을 검증하였다. 결과적으로, 제안한 알고리즘은 공격 메일 분류에서 좋은 성능(속도와 정확도)을 보여주었다.

텍스트 마이닝을 이용한 소비자 소비패턴 분석 기법 설계 (An Analysis Scheme Design of Customer Spending Pattern using Text Mining)

  • 정은희;이병관
    • 한국정보전자통신기술학회논문지
    • /
    • 제11권2호
    • /
    • pp.181-188
    • /
    • 2018
  • 본 논문에서는 텍스트 마이닝을 이용한 소비자의 소비패턴 분석 기법을 제안하였다. 제안하는 소비패턴 분석기법에서는 첫째, 피어슨의 상관계수를 이용하여 사용자의 평가점수에 대한 유사도를 분석하고, 둘째, 텍스트 마이닝 기법 중의 하나의 TD-IDF의 코사인 유사도를 이용하여 사용자의 리뷰들간의 유사도를 분석하고, 셋째, Sentiwordnet를 이용하여 평가점수와 리뷰의 일치성을 분석하였다. 그리고 제안하는 소비패턴 분석 기법은 평가점수의 유사도와 리뷰의 유사도를 이용하여 근접이웃들을 선정하고, 선정된 이웃에 소비패턴에 적합한 추천리스트를 제공하였다. 추천리스트의 정확도는 피어슨 상관계수가 0.79, TD-IDF가 0.73, 그리고 제안하는 소비패턴분석기법이 0.82로 나타났다. 즉, 제안하는 소비패턴분석기법은 소비자의 정량적인 평가점수와 정성적인 리뷰를 모두 이용하므로 소비 패턴을 좀 더 정확하게 분석할 수 있었다.

Word2vec을 활용한 문서의 의미 확장 검색방법 (Semantic Extention Search for Documents Using the Word2vec)

  • 김우주;김동희;장희원
    • 한국콘텐츠학회논문지
    • /
    • 제16권10호
    • /
    • pp.687-692
    • /
    • 2016
  • 기존의 문서 검색 방법론은 TF-IDF와 같은 벡터공간모델을 활용한 키워드 기반 방법론을 사용한다. 키워드 기반의 문서검색방법론으로는 문제가 몇몇 문제점이 나타날 수 있다. 먼저 몇 개의 키워드로 전체의 의미를 나타내기 힘들 수 있다. 또 기존의 키워드 기반의 방법론을 사용하면 의미상으로 비슷하지만 모양이 다른 동의어를 사용한 문서의 경우 두 문서 간에 일치하는 단어들의 특성치만 고려하여 관련이 있는 문서를 제대로 검색하지 못하거나 그 유사도를 낮게 평가할 수 있다. 본 연구는 문서를 기반으로 한 검색방법을 제안한다. Centrality를 사용해 쿼리 문서의 특성 벡터를 구하고 Word2vec알고리즘을 사용하여 단어의 모양이 아닌 단어의 의미를 고려할 수 있는 특성 벡터를 만들어 검색 성능의 향상과 더불어 유사한 단어를 사용한 문서를 찾을 수 있다.

텍스트 마이닝과 오피니언 마이닝 분석을 활용한 국내외 스포츠용품 브랜드 비교·분석 연구 (Comparison and Analysis of Domestic and Foreign Sports Brands Using Text Mining and Opinion Mining Analysis)

  • 김재환;이재문
    • 한국콘텐츠학회논문지
    • /
    • 제18권6호
    • /
    • pp.217-234
    • /
    • 2018
  • 본 연구는 국내외 스포츠용품 브랜드에 대한 빅데이터 분석을 실시하였다. 이를 위해 소셜 매트릭스 프로그램인 텍스톰과 패션데이터 분석 플랫폼인 MISP를 통해 텍스트 마이닝, TF-IDF, 오피니언 마이닝, 관심도 그래프를 실시하였으며, 스포츠브랜드에 대한 최근 인식을 살펴보기 위해 2017년 1월 1일부터 2017년 12월 31일까지 1년간을 연구대상 기간으로 한정하였다. 분석 결과, 첫째, 각 브랜드를 대표하는 상품을 확인할 수 있었다. 둘째, 각 브랜드를 대표하는 마케팅을 확인할 수 있었다. 셋째, 각 브랜드에서 공통적으로 추출된 단어를 확인할 수 있었다. 넷째, 각 브랜드의 긍정 및 부정에 대한 감정을 확인할 수 있었다.

문서의 의미론적 분석에 기반한 키워드 추출에 관한 연구 (A Study on Keywords Extraction based on Semantic Analysis of Document)

  • 송민규;배일주;이수홍;박지형
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2007년도 추계학술대회
    • /
    • pp.586-591
    • /
    • 2007
  • 지식 관리 시스템, 정보 검색 시스템, 그리고 전자 도서관 시스템 등의 문서를 다루는 시스템에서는 문서의 구조화 및 문서의 저장이 필요하다. 문서에 담겨있는 정보를 추출하기 위해 가장 우선시되어야 하는 것은 키워드의 선별이다. 기존 연구에서 가장 널리 사용된 알고리즘은 단어의 사용 빈도를 체크하는 TF(Term Frequency)와 IDF(Inverted Document Frequency)를 활용하는 TF-IDF 방법이다. 그러나 TF-IDF 방법은 문서의 의미를 반영하지 못하는 한계가 존재한다. 이를 보완하기 위하여 본 연구에서는 세 가지 방법을 활용한다. 첫 번째는 문헌 속에서의 단어의 위치 및 서론, 결론 등의 특정 부분에 사용된 단어의 활용도를 체크하는 문헌구조적 기법이고, 두 번째는 강조 표현, 비교 표현 등의 특정 사용 문구를 통제 어휘로 지정하여 활용하는 방법이다. 마지막으로 어휘의 사전적 의미를 분석하여 이를 메타데이터로 활용하는 방법인 언어학적 기법이 해당된다. 이를 통하여 키워드 추출 과정에서 문서의 의미 분석도 수행하여 키워드 추출의 효율을 높일 수 있다.

  • PDF

의무 기록 문서 분류를 위한 자연어 처리에서 최적의 벡터화 방법에 대한 비교 분석 (Comparative Analysis of Vectorization Techniques in Electronic Medical Records Classification)

  • 유성림
    • 대한의용생체공학회:의공학회지
    • /
    • 제43권2호
    • /
    • pp.109-115
    • /
    • 2022
  • Purpose: Medical records classification using vectorization techniques plays an important role in natural language processing. The purpose of this study was to investigate proper vectorization techniques for electronic medical records classification. Material and methods: 403 electronic medical documents were extracted retrospectively and classified using the cosine similarity calculated by Scikit-learn (Python module for machine learning) in Jupyter Notebook. Vectors for medical documents were produced by three different vectorization techniques (TF-IDF, latent sematic analysis and Word2Vec) and the classification precisions for three vectorization techniques were evaluated. The Kruskal-Wallis test was used to determine if there was a significant difference among three vectorization techniques. Results: 403 medical documents were relevant to 41 different diseases and the average number of documents per diagnosis was 9.83 (standard deviation=3.46). The classification precisions for three vectorization techniques were 0.78 (TF-IDF), 0.87 (LSA) and 0.79 (Word2Vec). There was a statistically significant difference among three vectorization techniques. Conclusions: The results suggest that removing irrelevant information (LSA) is more efficient vectorization technique than modifying weights of vectorization models (TF-IDF, Word2Vec) for medical documents classification.