References
- Chicco D, Lovejoy CA, Oneto L. A machine learning analysis of health records of patients with chronic kidney disease at risk of cardiovascular disease. IEEE Access. 2021;9(3):165132-44. https://doi.org/10.1109/ACCESS.2021.3133700
- Blakey JD, Price DB, Pizzichini E. Identifying risk of future asthma attacks using UK medical record data: A respiratory effectiveness group initiative. J Allergy Clin Immunol. 2017;5(4):1015-24. https://doi.org/10.1016/j.jaip.2016.11.007
- Tomasallo CD, Hanrahan LP, Tandias A. Estimating Wisconsin asthma prevalence using clinical electronic health records and public health data. Am J Public Health. 2014;104(1):65-73.
- Spasic I, Livsey J, Keane JA. Text mining of cancer-related information: Review of current status and future directions. Int J Med Informatics. 2014;83(9):605-23. https://doi.org/10.1016/j.ijmedinf.2014.06.009
- Jonnalagadda SR, Adupa AK, Garg RP. Text mining of the electronic health record: An information extraction approach for automated identification and subphenotyping of HFpEF patients for clinical trials. J Cardiovasc Transl Res. 2017;10(3):313-21. https://doi.org/10.1007/s12265-017-9752-2
- Rahaman T. Discovering new trend and connections: Current application of biomedical text mining. Med Ref Services Quarterly. 2021;40(3):329-36. https://doi.org/10.1080/02763869.2021.1945869
- Le Glaz A, Haralambous Y, Kim D. Machine learning and natural language processing in mental health: Systemic review. J Med Internet Res. 2021;23(5):15708.
- Shai SS, Shai BD. Understanding machine learning: from theory to algorithms. New York: Cambridge University Press; 2014.
- Peter F. Machine learning: the art and science of algorithms that make sense of data. Cambridge: Cambridge University Press; 2012.
- Mehryar M, Afshin R, Ameet T. Foundations of machine learning. Cambridge: MIT press; 2012.
- Chen MC, Ball RL, Yang L. Deep learning to classify radiology free-text reports. Radiology. 2018;286(3):845-2. https://doi.org/10.1148/radiol.2017171115
- Pak DH, Hwang MG, Hwang JU. Application of text classification based machine learning in prediction psychiatric diagnosis. Korean J Biol Psychiatry. 2020;27(1):18-26.
- Andrea C, Leif J, Hercules D. Natural language processing and machine learning to enable automatic extraction and classification of patients' smoking status from electronic medical records. Upsala J Med Sci. 2020;125(4):316-24. https://doi.org/10.1080/03009734.2020.1792010
- Yuli V. Natural language processing with Python and spaCy: a practical introduction. San Francisco: No Starch Press; 2020.
- Hobson L, Cole H, Arwen G. Natural language processing in action: understanding, analyzing and generating text with Python. Shelter Island, NY: Manning Publications Co.; 2019.
- Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space. In Proceedings of Workshop at ICLR. 2013;1301-13.
- Gastaldi JL. Why can computers understand natural language? The structuralist image of language behind word embeddings. Phil Tech. 2021;34(1):149-214. https://doi.org/10.1007/s13347-020-00393-9
- Guillermo JB, Ricardo O, Jose AL. Using latent semantic analysis and the predication algorithm to improve extraction of meanings from a diagnostic corpus. Span J Psychol. 2009;12(2):424-40. https://doi.org/10.1017/s1138741600001815
- Zhou Y. An introduction to text classification with applications to medical records. 2nd international conference on informational technology and computer application. 2020;471-75.
- Kherwa P, Bansal P. Latent semantic analysis: an approach to understanding sematic of text. International conference on current trends in computer, electrical, electronics and communication. 2017;870-4.
- Almas J, Qamar U. Affect of data filter on performance of latent semantic analysis based research paper recommender system. 5th International conference on computational intelligence and application. 2020;50-54.
- Weng WH, Wagholikar KB, McCray A., Szolovits P. Medical subdomain classification of clinical notes using a machine learning based natural language processing approach. BMC med inform Decis Mak. 2017;17(1):1-13. https://doi.org/10.1186/s12911-016-0389-x
- Jamaluddin M, Wibawa AD. Patient diagnosis classification based on electronic medical record using text mining and support vector machine. International seminar on application for technology of information and communication. 2021;243-8.
- Wang Y, Sohn SH, Liu S, Shen F. A clinical text classification paradigm using weak supervision and deep representation. BMC med inform Decis Mak. 2019;19(1).
- Park KB, Lee JH, Jang SB, Jung DW. An empirical study of tokenization strategies for various Korean NLP tasks. Computer Science. 2020.
- Cho DB, Lee HY, Kang SS. An empirical study of Korean sentence representation with various tokenization. Electronics. 2021;10(7):845-57. https://doi.org/10.3390/electronics10070845