• Title/Summary/Keyword: text segmentation

Search Result 140, Processing Time 0.028 seconds

Object detection in financial reporting documents for subsequent recognition

  • Sokerin, Petr;Volkova, Alla;Kushnarev, Kirill
    • International journal of advanced smart convergence
    • /
    • v.10 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • Document page segmentation is an important step in building a quality optical character recognition module. The study examined already existing work on the topic of page segmentation and focused on the development of a segmentation model that has greater functional significance for application in an organization, as well as broad capabilities for managing the quality of the model. The main problems of document segmentation were highlighted, which include a complex background of intersecting objects. As classes for detection, not only classic text, table and figure were selected, but also additional types, such as signature, logo and table without borders (or with partially missing borders). This made it possible to pose a non-trivial task of detecting non-standard document elements. The authors compared existing neural network architectures for object detection based on published research data. The most suitable architecture was RetinaNet. To ensure the possibility of quality control of the model, a method based on neural network modeling using the RetinaNet architecture is proposed. During the study, several models were built, the quality of which was assessed on the test sample using the Mean average Precision metric. The best result among the constructed algorithms was shown by a model that includes four neural networks: the focus of the first neural network on detecting tables and tables without borders, the second - seals and signatures, the third - pictures and logos, and the fourth - text. As a result of the analysis, it was revealed that the approach based on four neural networks showed the best results in accordance with the objectives of the study on the test sample in the context of most classes of detection. The method proposed in the article can be used to recognize other objects. A promising direction in which the analysis can be continued is the segmentation of tables; the areas of the table that differ in function will act as classes: heading, cell with a name, cell with data, empty cell.

Machine Learning Based Automatic Categorization Model for Text Lines in Invoice Documents

  • Shin, Hyun-Kyung
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.12
    • /
    • pp.1786-1797
    • /
    • 2010
  • Automatic understanding of contents in document image is a very hard problem due to involvement with mathematically challenging problems originated mainly from the over-determined system induced by document segmentation process. In both academic and industrial areas, there have been incessant and various efforts to improve core parts of content retrieval technologies by the means of separating out segmentation related issues using semi-structured document, e.g., invoice,. In this paper we proposed classification models for text lines on invoice document in which text lines were clustered into the five categories in accordance with their contents: purchase order header, invoice header, summary header, surcharge header, purchase items. Our investigation was concentrated on the performance of machine learning based models in aspect of linear-discriminant-analysis (LDA) and non-LDA (logic based). In the group of LDA, na$\"{\i}$ve baysian, k-nearest neighbor, and SVM were used, in the group of non LDA, decision tree, random forest, and boost were used. We described the details of feature vector construction and the selection processes of the model and the parameter including training and validation. We also presented the experimental results of comparison on training/classification error levels for the models employed.

Text Location and Extraction for Business Cards Using Stroke Width Estimation

  • Zhang, Cheng Dong;Lee, Guee-Sang
    • International Journal of Contents
    • /
    • v.8 no.1
    • /
    • pp.30-38
    • /
    • 2012
  • Text extraction and binarization are the important pre-processing steps for text recognition. The performance of text binarization strongly related to the accuracy of recognition stage. In our proposed method, the first stage based on line detection and shape feature analysis applied to locate the position of a business card and detect the shape from the complex environment. In the second stage, several local regions contained the possible text components are separated based on the projection histogram. In each local region, the pixels grouped into several connected components based on the connected component labeling and projection histogram. Then, classify each connect component into text region and reject the non-text region based on the feature information analysis such as size of connected component and stroke width estimation.

Segmentation of Words from the Lines of Unconstrained Handwritten Text using Neural Networks (신경회로망을 이용한 제약 없이 쓰여진 필기체 문자열로부터 단어 분리 방법)

  • Kim, Gyeong-Hwan
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.7
    • /
    • pp.27-35
    • /
    • 1999
  • Researches on the recognition of handwritten script have been conducted under the assumption that the isolated recognition units are provided as inputs. However, in practical recognition system designs, providing the isolated recognition unit is an challenge due to various writing syles. This paper proposes an approach for segmenting words from lines of unconstrained handwritten text, without help of recognition. In contrast to the conventional approaches which are based on physical gaps between connected components, clues that reflect the author's writing style, in terms of spacing, are extracted and utilized for the segmentation using a simple neural network. The clues are from character segments and include normalized heights and intervals of the segments. Effectiveness of the proposed approach compared with the conventional connected component based approaches in terms of word segmentation performance was evaluated by experiments.

  • PDF

Acoustic Modeling and Energy-Based Postprocessing for Automatic Speech Segmentation (자동 음성 분할을 위한 음향 모델링 및 에너지 기반 후처리)

  • Park Hyeyoung;Kim Hyungsoon
    • MALSORI
    • /
    • no.43
    • /
    • pp.137-150
    • /
    • 2002
  • Speech segmentation at phoneme level is important for corpus-based text-to-speech synthesis. In this paper, we examine acoustic modeling methods to improve the performance of automatic speech segmentation system based on Hidden Markov Model (HMM). We compare monophone and triphone models, and evaluate several model training approaches. In addition, we employ an energy-based postprocessing scheme to make correction of frequent boundary location errors between silence and speech sounds. Experimental results show that our system provides 71.3% and 84.2% correct boundary locations given tolerance of 10 ms and 20 ms, respectively.

  • PDF

A Study on Consonant/Vowel/Unvoiced Consonant Phonetic Value Segmentation and Recognition of Korean Isolated Word Speech (한국어 고립 단어 음성의 자음/모음/유성자음 음가 분할 및 인식에 관한 연구)

  • Lee, Jun-Hwan;Lee, Sang-Beom
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.6
    • /
    • pp.1964-1972
    • /
    • 2000
  • For the Korean language, on acoustics, it creates a different form of phonetic value not a phoneme by its own peculiar property. Therefore, the construction of extended recognition system for understanding Korean language should be created with a study of the Korean rule-based system, before it can be used as post-processing of the Korean recognition system. In this paper, text-based Korean rule-based system featuring Korean peculiar vocal sound changing rule is constructed. and based on the text-based phonetic value result of the system constructed, a preliminary phonetic value segmentation border points with non-uniform blocks are extracted in Korean isolated word speech. Through the way of merge and recognition of the non-uniform blocks between the extracted border points, recognition possibility of Korean voice as the form of the phonetic vale has been investigated.

  • PDF

A Text Detection Method Using Wavelet Packet Analysis and Unsupervised Classifier

  • Lee, Geum-Boon;Odoyo Wilfred O.;Kim, Kuk-Se;Cho, Beom-Joon
    • Journal of information and communication convergence engineering
    • /
    • v.4 no.4
    • /
    • pp.174-179
    • /
    • 2006
  • In this paper we present a text detection method inspired by wavelet packet analysis and improved fuzzy clustering algorithm(IAFC).This approach assumes that the text and non-text regions are considered as two different texture regions. The text detection is achieved by using wavelet packet analysis as a feature analysis. The wavelet packet analysis is a method of wavelet decomposition that offers a richer range of possibilities for document image. From these multi scale features, we adapt the improved fuzzy clustering algorithm based on the unsupervised learning rule. The results show that our text detection method is effective for document images scanned from newspapers and journals.

Stroke Width-Based Contrast Feature for Document Image Binarization

  • Van, Le Thi Khue;Lee, Gueesang
    • Journal of Information Processing Systems
    • /
    • v.10 no.1
    • /
    • pp.55-68
    • /
    • 2014
  • Automatic segmentation of foreground text from the background in degraded document images is very much essential for the smooth reading of the document content and recognition tasks by machine. In this paper, we present a novel approach to the binarization of degraded document images. The proposed method uses a new local contrast feature extracted based on the stroke width of text. First, a pre-processing method is carried out for noise removal. Text boundary detection is then performed on the image constructed from the contrast feature. Then local estimation follows to extract text from the background. Finally, a refinement procedure is applied to the binarized image as a post-processing step to improve the quality of the final results. Experiments and comparisons of extracting text from degraded handwriting and machine-printed document image against some well-known binarization algorithms demonstrate the effectiveness of the proposed method.

Machine Printed and Handwritten Text Discrimination in Korean Document Images

  • Trieu, Son Tung;Lee, Guee Sang
    • Smart Media Journal
    • /
    • v.5 no.3
    • /
    • pp.30-34
    • /
    • 2016
  • Nowadays, there are a lot of Korean documents, which often need to be identified in one of printed or handwritten text. Early methods for the identification use structural features, which can be simple and easy to apply to text of a specific font, but its performance depends on the font type and characteristics of the text. Recently, the bag-of-words model has been used for the identification, which can be invariant to changes in font size, distortions or modifications to the text. The method based on bag-of-words model includes three steps: word segmentation using connected component grouping, feature extraction, and finally classification using SVM(Support Vector Machine). In this paper, bag-of-words model based method is proposed using SURF(Speeded Up Robust Feature) for the identification of machine printed and handwritten text in Korean documents. The experiment shows that the proposed method outperforms methods based on structural features.

A Study on the DB-IR Integration: Per-Document Basis Online Index Maintenance

  • Jin, Du-Seok;Jung, Hoe-Kyung
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.3
    • /
    • pp.275-280
    • /
    • 2009
  • While database(DB) and information retrieval(IR) have been developed independently, there have been emerging requirements that both data management and efficient text retrieval should be supported simultaneously in an information system such as health care, customer support, XML data management, and digital libraries. The great divide between DB and IR has caused different manners in index maintenance for newly arriving documents. While DB has extended its SQL layer to cope with text fields due to lack of intact mechanism to build IR-like index, IR usually treats a block of new documents as a logical unit of index maintenance since it has no concept of integrity constraint. However, In the DB-IR integrations, a transaction on adding or updating a document should include maintenance of the posting lists accompanied by the document. Although DB-IR integration has been budded in the research filed, the issue will remain difficult and rewarding areas for a while. One of the primary reasons is lack of efficient online transactional index maintenance. In this paper, performance of a few strategies for per-document basis transactional index maintenance - direct index update, pulsing auxiliary index and posting segmentation index - will be evaluated. The result shows that the pulsing auxiliary strategy and posting segmentation indexing scheme, can be a challenging candidates for text field indexing in DB-IR integration.