• 제목/요약/키워드: text data

검색결과 2,935건 처리시간 0.034초

오류 학습 문서 제거를 통한 문서 범주화 기법의 성능 향상 (A Text Categorization Method Improved by Removing Noisy Training Documents)

  • 한형동;고영중;서정연
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권9호
    • /
    • pp.912-919
    • /
    • 2005
  • 문서 범주화에서 이진 분류를 다중 분류에 적용할 때 일반적으로 '한 범주에 적합-다른 모든 범주에서는 부적합(One-Against-All) 판정 방법'을 사용한다. 하지만, 이러한 '한 범주에 적합-다른 모든 범주에서는 부적합 판정 방법'은 한 가지 문제점을 가지는데, 적합(positive) 집합의 문서들은 사람이 직접범주를 할당한 것이지만 부적합(negative) 집합의 문서들은 사람이 직접 범주를 할당한 것이 아니기 때문에 오류 문서들이 많이 포함될 수 있다는 것이다. 본 논문에서는 이러한 문제점을 해결하기 위해서 슬라이딩 원도우(sliding window) 기법과 EM 알고리즘을 이진 분류 기반의 문서 범주화에 적용할 것을 제안한다. 제안된 기법은 먼저 슬라이딩 윈도우 기법을 사용하여 오류 문서들을 추출하고 이들을 EM알고리즘을 사용해서 다시 범주를 할당함으로써 이진 분류 기반의 문서 범주화 기법의 성능을 향상시킨다.

텍스트 네트워크 분석을 통한 환자중앙감시시스템의 사용적합성 평가를 위한 위해요인 분석 (Hazard Analysis for Usability Evaluation of Central Monitoring System through Text Network Analysis)

  • 정지용;장원석
    • 대한의용생체공학회:의공학회지
    • /
    • 제45권4호
    • /
    • pp.187-194
    • /
    • 2024
  • In this study, text network analysis was performed using PMS(Post-Marketing Surveillance) data collected from the FDA's MAUDE(Manufacturer and User Facility Device Experience) database to evaluate the usability of the central monitoring system. Based on the data reported from January 1, 2021 to June 30, 2023, keywords related to the central monitoring system were extracted and visualized with a text network. By analyzing the eigenvector centrality of text network, we identified hazards and types of hazardous situations related to usability of the central monitoring system. Eigenvector centrality was chosen because it is relatively more accurate than other centralities. In addition, we derived an appropriate use scenario to evaluate the usability of the central monitoring system. The research results provide more realistic and valuable insights through data derived based on actual adverse event cases, and are expected to contribute to improving safety and reliability by identifying user requirements for improved usability and reducing use errors in the future.

Text-Mining of Online Discourse to Characterize the Nature of Pain in Low Back Pain

  • Ryu, Young Uk
    • 대한물리의학회지
    • /
    • 제14권3호
    • /
    • pp.55-62
    • /
    • 2019
  • PURPOSE: Text-mining has been shown to be useful for understanding the clinical characteristics and patients' concerns regarding a specific disease. Low back pain (LBP) is the most common disease in modern society and has a wide variety of causes and symptoms. On the other hand, it is difficult to understand the clinical characteristics and the needs as well as demands of patients with LBP because of the various clinical characteristics. This study examined online texts on LBP to determine of text-mining can help better understand general characteristics of LBP and its specific elements. METHODS: Online data from www.spine-health.com were used for text-mining. Keyword frequency analysis was performed first on the complete text of postings (full-text analysis). Only the sentences containing the highest frequency word, pain, were selected. Next, texts including the sentences were used to re-analyze the keyword frequency (pain-text analysis). RESULTS: Keyword frequency analysis showed that pain is of utmost concern. Full-text analysis was dominated by structural, pathological, and therapeutic words, whereas pain-text analysis was related mainly to the location and quality of the pain. CONCLUSION: The present study indicated that text-mining for a specific element (keyword) of a particular disease could enhance the understanding of the specific aspect of the disease. This suggests that a consideration of the text source is required when interpreting the results. Clinically, the present results suggest that clinicians pay more attention to the pain a patient is experiencing, and provide information based on medical knowledge.

베이지안 공액 사전분포를 이용한 키워드 데이터 분석 (Keyword Data Analysis Using Bayesian Conjugate Prior Distribution)

  • 전성해
    • 한국콘텐츠학회논문지
    • /
    • 제20권6호
    • /
    • pp.1-8
    • /
    • 2020
  • 빅데이터 분석에서 텍스트 데이터의 활용이 증가하고 있다. 따라서 텍스트 데이터의 분석 기법에 관한 많은 연구가 이루어지고 있다. 본 논문에서는 텍스트 데이터로부터 추출된 키워드 데이터의 분석을 위하여 공액사전분포 기반의 베이지안 학습 방법이 연구된다. 베이지안 통계학은 기존의 데이터에 새로운 데이터가 추가될 때마다 모수를 갱신하는 데이터 학습을 제공하기 때문에 시간에 따라 대용량의 데이터가 생성 및 추가되는 빅데이터 환경에서 효율적인 방법을 제공한다. 제안 방법의 성능과 적용 가능성을 보이기 위하여 실제 특허 빅데이터를 전처리하여 구축된 정형화된 키워드 데이터를 분석하는 사례연구를 수행한다.

Automated Classification of PubMed Texts for Disambiguated Annotation Using Text and Data Mining

  • Choi, Yun-Jeong;Park, Seung-Soo
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2005년도 BIOINFO 2005
    • /
    • pp.101-106
    • /
    • 2005
  • Recently, as the size of genetic knowledge grows faster, automated analysis and systemization into high-throughput database has become hot issue. One essential task is to recognize and identify genomic entities and discover their relations. However, ambiguity of name entities is a serious problem because of their multiplicity of meanings and types. So far, many effective techniques have been proposed to analyze documents. Yet, accuracy is high when the data fits the model well. The purpose of this paper is to design and implement a document classification system for identifying entity problems using text/data mining combination, supplemented by rich data mining algorithms to enhance its performance. we propose RTP ost system of different style from any traditional method, which takes fault tolerant system approach and data mining strategy. This feedback cycle can enhance the performance of the text mining in terms of accuracy. We experimented our system for classifying RB-related documents on PubMed abstracts to verify the feasibility.

  • PDF

시각 장애우를 위한 Wearable Computing System (Wearable Computing System for the bland persons)

  • 김형호;최선희;조태종;김순주;장재인
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.261-263
    • /
    • 2006
  • Nowadays, technologies such as RFID, sensor network makes our life comfortable more and more. In this paper we propose a wearable computing system for blind and deaf person who can be easily out of sight from our technology. We are making a wearable computing system that is consisted of embedded board to processing data, ultrasonic sensors to get distance data and motors that make vibration as a signal to see the screen for a deaf person. This system offers environmental informations by text and voice. For example, distance data from a obstacle to a person are calculated by data compounding module using sensed ultrasonic reflection time. This data is converted to text or voice by main processing module, and are serviced to a handicapped person. Furthermore we will extend this system using a voice recognition module and text to voice convertor module to help communication among the blind and deaf persons.

  • PDF

Study of Mental Disorder Schizophrenia, based on Big Data

  • Hye-Sun Lee
    • International Journal of Advanced Culture Technology
    • /
    • 제11권4호
    • /
    • pp.279-285
    • /
    • 2023
  • This study provides academic implications by considering trends of domestic research regarding therapy for Mental disorder schizophrenia and psychosocial. For the analysis of this study, text mining with the use of R program and social network analysis method have been used and 65 papers have been collected The result of this study is as follows. First, collected data were visualized through analysis of keywords by using word cloud method. Second, keywords such as intervention, schizophrenia, research, patients, program, effect, society, mind, ability, function were recorded with highest frequency resulted from keyword frequency analysis. Third, LDA (latent Dirichlet allocation) topic modeling result showed that classified into 3 keywords: patient, subjects, intervention of psychosocial, efficacy of interventions. Fourth, the social network analysis results derived connectivity, closeness centrality, betweennes centrality. In conclusion, this study presents significant results as it provided basic rehabilitation data for schizophrenia and psychosocial therapy through new research methods by analyzing with big data method by proposing the results through visualization from seeking research trends of schizophrenia and psychosocial therapy through text mining and social network analysis.

텍스트 마이닝을 활용한 건설안전사고 빅데이터 분석 (Big Data Analytics of Construction Safety Incidents Using Text Mining)

  • 서정욱;송지훈
    • 한국산업융합학회 논문집
    • /
    • 제27권3호
    • /
    • pp.581-590
    • /
    • 2024
  • This study aims to extract key topics through text mining of incident records (incident history, post-incident measures, preventive measures) from construction safety accident case data available on the public data portal. It also seeks to provide fundamental insights contributing to the establishment of manuals for disaster prevention by identifying correlations between these topics. After pre-processing the input data, we used the LDA-based topic modeling technique to derive the main topics. Consequently, we obtained five topics related to incident history, and four topics each related to post-incident measures and preventive measures. Although no dominant patterns emerged from the topic pattern analysis, the study holds significance as it provides quantitative information on the follow-up actions related to the incident history, thereby suggesting practical implications for the establishment of a preventive decision-making system through the linkage between accident history and subsequent measures for reccurrence prevention.

분석지의 확장을 위한 소셜 빅데이터 활용연구 - 국내 '빅데이터' 수요공급 예측 - (a Study on Using Social Big Data for Expanding Analytical Knowledge - Domestic Big Data supply-demand expectation -)

  • 김정선;권은주;송태민
    • 지식경영연구
    • /
    • 제15권3호
    • /
    • pp.169-188
    • /
    • 2014
  • Big data seems to change knowledge management system and method of enterprises to large extent. Further, the type of method for utilization of unstructured data including image, v ideo, sensor data a nd text may determine the decision on expansion of knowledge management of the enterprise or government. This paper, in this light, attempts to figure out the prediction model of demands and supply for big data market of Korea trough data mining decision making tree by utilizing text bit data generated for 3 years on web and SNS for expansion of form for knowledge management. The results indicate that the market focused on H/W and storage leading by the government is big data market of Korea. Further, the demanders of big data have been found to put important on attribute factors including interest, quickness and economics. Meanwhile, innovation and growth have been found to be the attribute factors onto which the supplier puts importance. The results of this research show that the factors affect acceptance of big data technology differ for supplier and demander. This article may provide basic method for study on expansion of analysis form of enterprise and connection with its management activities.

  • PDF

고객의 소리(VOC) 데이터를 활용한 서비스 처리 시간 예측방법 (A Method of Predicting Service Time Based on Voice of Customer Data)

  • 김정훈;권오병
    • 한국IT서비스학회지
    • /
    • 제15권1호
    • /
    • pp.197-210
    • /
    • 2016
  • With the advent of text analytics, VOC (Voice of Customer) data become an important resource which provides the managers and marketing practitioners with consumer's veiled opinion and requirements. In other words, making relevant use of VOC data potentially improves the customer responsiveness and satisfaction, each of which eventually improves business performance. However, unstructured data set such as customers' complaints in VOC data have seldom used in marketing practices such as predicting service time as an index of service quality. Because the VOC data which contains unstructured data is too complicated form. Also that needs convert unstructured data from structure data which difficult process. Hence, this study aims to propose a prediction model to improve the estimation accuracy of the level of customer satisfaction by combining unstructured from textmining with structured data features in VOC. Also the relationship between the unstructured, structured data and service processing time through the regression analysis. Text mining techniques, sentiment analysis, keyword extraction, classification algorithms, decision tree and multiple regression are considered and compared. For the experiment, we used actual VOC data in a company.