References
- T. Joacnims, Learning to Classify Text Using Support Vector Machines : theory and Algorithms by Thorsten Joachims. Dept. of Computer Science, Cornell University. NY, USA, Kluwer Academic Publishers, April, 2002
- H. Yu. J. Han, and K. Chang, 'PEBL : Positive Example Based Learning for Web Page Classification Using SVM,' Proceedings of International Conference on Knowledge Discovery and Data Mining (KDD'02), 2002 https://doi.org/10.1145/775047.775083
- H. Yu, C.X. Zhai, and J. Han, 'Text Classification from Positive and Unlabeled Documents,' Proceedings of International Conference on Knowledge Management (CIKM'03), New Orleans. Louisiana, USA, November 3-8, 2003 https://doi.org/10.1145/956863.956909
- B. Liu, W.S. Lee, P.S. Yu and X. Li., 'Partially Supervised Classification of Text Documents,' Proceedings of the Nineteenth International Conference on Machine Learning (ICML-2002), Sydney, Australia, July 8-12, 2002
- X. Li and B. Liu., 'Learning to classify text using positive and unlabeled data,' Proceedings of Eighteenth International Joint Conference on Artificial Intelligence (IJCAI-03), Acapulco, Mexico, Aug 9-15, 2003
- B. Zadrozny and C. Elkan., 'Reducing Multiclass to Binary by Coupling Probability Estimates,' Proceedings of International Conference on Knowledge Discovery and Data Mining(KDD'02), 2002
- B. Zadrozny and C. Elkan, 'Obtaining Calibrated Probability Estimates from Decision Trees and Naive Bayesian Classifiers,' Proceedings of the Eighteenth International Conference on Machine Learning, 2001
- C.-W. Hsu and C.-J. Lin. 'A Comparison of Methods for Multi-class Support Vector Machines,' IEEE Transactions on Neural Networks, 13, pp. 415-425, 2002 https://doi.org/10.1109/72.991427
- D.D. Lewis, 'Naive (bayes) at Forty: The Independence Assumption in Information Retrieval,' Proceedings of European Conference on Machine Learning, 1998
- T. Mitchell, Machine Learning. New York: McGraw-Hill, 1997
- A. Demster, N. M. Laird, and D. Rubin, 'Maximum Likelihood from Incomplete Data via the EM Algorithm,' Journal of the Royal Statistical Society series B, vol 39, No. 1, pp. 1-38, 1997
- K. P. Nigam, 'Using Unlabeled Data to Improve Text Classification,' Doctoral dissertation, computer Science Department, Carnegie Mellon University, 2001
- M. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. Mitchell, K. Nigam, and S. Slattery, 'Learning to Construct Knowledge Bases from the World Wide Web,' Artificial Intelligence, 118 (1-2), pp. 69-113, 2000 https://doi.org/10.1016/S0004-3702(00)00004-7
- A. McCallum and K. Nigram, 'A Comparison of Event Models for Naive Bayes Text Classification,' AAAI '98 workshop on Learning for Text Categorization, 1998
- K. Nigam, A. McCallum, S. Thrun, T. Mitchell, 'Learning to Classify Text from Labeled and Unlabeled Documents,' Proceedings of 15th National Conference on Artificial Intelligence (AAAI-98), 1998
- Y. Yang, S. Slattery, and R. Ghani. 'A Study of Approaches to Hypertext Categorization,' Journal of Intelligent Information Systems, Vol. 18, No. 2., 2002 https://doi.org/10.1023/A:1013685612819
- T. Joachims, 'Text Categorization with Support Vector Machines: Learning with Many Relevant Features,' ECML, pp. 137-142, 1998 https://doi.org/10.1007/BFb0026683
- Y. Yang, 'An Evaluation of Statistical Approaches to Text Categorization,' Information Retrieval Journal, May, 1999 https://doi.org/10.1023/A:1009982220290