• Title/Summary/Keyword: testicular

Search Result 525, Processing Time 0.028 seconds

Effects of intravenous multiple busulfan injection on suppression of endogenous spermatogenesis in recipient stallion testes

  • Jung, Heejun;Yoon, Minjung
    • Journal of Animal Science and Technology
    • /
    • v.63 no.5
    • /
    • pp.1194-1203
    • /
    • 2021
  • Preparation of recipient stallions is critical step to produce donor spermatogonial stem cell (SSC) derived sperm using transplantation technique. This study was conducted to evaluate the effects of intravenous busulfan infusion on germ cell depletion, semen production, and libido in stallions. Six Thoroughbred stallions were separated into two treatment groups: 1) a multiple low-dose (2.5 mg/kg bw for the first 4 weeks and 5 mg/kg bw for the 5th week); and 2) control group treated with PBS. Testicular samples were obtained at 11 weeks and classified into three different patterns of spermatogenesis, such as normal, Sertoli cell only, and destroyed. Semen collection and libido experiments were performed 1 week before treatment, and 4 and 8 weeks after treatment. For the sperm analysis, total spermatozoa and motility were measured using a light microscope with a motility analyzing system. In the multiple low-dose group, the numbers of tubules categorized as Sertoli cell only were significantly higher than those in the control as well as the total population and total/progressive motility of sperm were significantly decreased 8 weeks after the start of the treatment. The sperm production and motility in the multiple low-dose group appears to be reduced, while libido was maintained. In conclusion, multiple administration of 2.5 mg/kg bw busulfan depletes endogenous germ cells in the stallion recipients for SSC transplantation.

Update on genetic screening and treatment for infertile men with genetic disorders in the era of assisted reproductive technology

  • Lee, Seung Ryeol;Lee, Tae Ho;Song, Seung-Hun;Kim, Dong Suk;Choi, Kyung Hwa;Lee, Jae Ho;Kim, Dae Keun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.48 no.4
    • /
    • pp.283-294
    • /
    • 2021
  • A genetic etiology of male infertility is identified in fewer than 25% of infertile men, while 30% of infertile men lack a clear etiology, resulting in a diagnosis of idiopathic male infertility. Advances in reproductive genetics have provided insights into the mechanisms of male infertility, and a characterization of the genetic basis of male infertility may have broad implications for understanding the causes of infertility and determining the prognosis, optimal treatment, and management of couples. In a substantial proportion of patients with azoospermia, known genetic factors contribute to male infertility. Additionally, the number of identified genetic anomalies in other etiologies of male infertility is growing through advances in whole-genome amplification and next-generation sequencing. In this review, we present an up-to-date overview of the indications for appropriate genetic tests, summarize the characteristics of chromosomal and genetic diseases, and discuss the treatment of couples with genetic infertility by microdissection-testicular sperm extraction, personalized hormone therapy, and in vitro fertilization with pre-implantation genetic testing.

Bone Marrow Toxicity Caused by Estrogen Toxicity in a Yorkshire Terrier with Leydig Cell Tumor

  • Kim, Yoon-Hee;Ko, Kyu-Ryeon;No, Mi-Young;Kim, Jae-Hoon;Choi, Ul-Soo
    • Journal of Veterinary Clinics
    • /
    • v.36 no.2
    • /
    • pp.129-131
    • /
    • 2019
  • A 15-year-old intact Yorkshire terrier was presented with anorexia, lethargy, and a pale mucous membrane. A physical examination one year ago revealed right testis mass and subcutaneous petechia. Blood work revealed severe thrombocytopenia and mild anemia, and no abnormalities were found in serum chemistry or ultrasonography. The preoperative serum estrogen concentration was moderately elevated. The enlarged testis was surgically removed. A well-encapsulated mass composed of polyhedral or round with abundant eosinophilic cytoplasm containing fine granular or vacuolation were found in a histological examination of the removed tissue. The nuclei of tumor cells were round, and mitotic figures were low but neoplastic cells showed a mild invasive tendency to adjacent tissues with contained neoplastic cell emboli in one lymphatic lumen. A diagnosis of a malignant Leydig cell tumor was made. The patient recovered from surgery uneventfully, but his condition worsened despite repeated transfusions and supportive therapy, and he was euthanized according to the owner's decision. Leydig cell tumor should be included in estrogen toxicity associated with testicular mass.

How to design male hypothyroid hypogonadism model (갑상샘기능저하증에 따른 생식샘기능저하증 모델 정립을 위한 제언)

  • Yoon, Sang-Pil;Kim, Jung Woo
    • Journal of Medicine and Life Science
    • /
    • v.16 no.1
    • /
    • pp.34-38
    • /
    • 2019
  • Hypogonadism is a clinical syndrome that results in hormone deficiency and can be classified as 1) primary caused by the gonadal failure and 2) secondary by the hypothalamus-pituitary gland dysfunction and/or cardiometabolic complications. Recently the presence of thyroid hormone receptors in different testicular cell types was demonstrated, and thus thyroid dysfunctions would be another cause of secondary hypogonadism. Thus, we investigated the effects of perinatal hypothyroidism on hypogonadism in male Sprague-Dawley rats. Perinatal hypothyroidism was induced by daily administration of 0.05% 6-propyl-2-thiouracil (PTU) by tap water from gestation day 15, which were compared with negative control (PTU (-)) group. At postnatal day 28, hypothyroid pups were divided into 2 groups: PTU (+) group - continued PTU treatment and PTU (+/-) group - stopped PTU until postnatal day 49. Body weights, dehydrotesosterone (DHT), and testosterone levels were checked 2 and 3 weeks after grouping. Body weights were significantly decreased in PTU(+) and PTU(+/-) groups compared with PTU (-) group at postnatal day 28. 3 weeks later, PTU (+/-) group significantly gained weight compared with PTU (+) group. DHT and testosterone levels significantly decreased with PTU treatment, but increased 3 weeks after stopping PTU administration. Perinatal PTU-induced hypothyroid hypogonadism was sustained for 2 weeks after stopping PTU administration, but restored gonadal hormone levels 3 weeks after stopping PTU. These results suggest that researchers should design an experiment on hypothyroid hypogonadism based on the estimated period.

Blood-Testis Barrier and Sperm Delayed in the Cauda Epididymis of the Reproductively Regressed Syrian Hamsters

  • Jeon, Geon Hyung;Lee, Sung-Ho;Cheon, Yong-Pil;Choi, Donchan
    • Development and Reproduction
    • /
    • v.25 no.1
    • /
    • pp.1-14
    • /
    • 2021
  • The Syrian (golden) hamsters are seasonal breeders whose reproductive functions are active in summer and inactive in winter. In experimental facility mimicking winter climate, short photoperiod (SP) induces gonadal regression. The blood-testis barrier (BTB) of the sexually involuted animals have been reported to be permeable, allowing developing germ cells to be engulfed or sloughed off the epithelium of the seminiferous tubules. The expressions of genes related to the tight junction composing of BTB were investigated in the reproductive active and inactive testes. Claudin-11, occludin, and junctional adhesion molecule (JAM) were definitely expressed in the active testes but not discernably detected in the inactive testes. And spermatozoa (sperm) were observed in the whole lengths of epididymides in the active testes. They were witnessed in only cauda region of the epididymides but not in caput and corpus regions in animals with the inactive testes. The results imply that the disorganization of BTB is associated with the testicular regression. The developing germ cells are swallowed into the Sertoli cells or travel into the lumen, as supported by the presence of the sperm delayed in the last region of the epididymis. These outcomes suggest that both apoptosis and desquamation are the processes that eliminate the germ cells during the regressing stage in the Syrian hamsters.

Testosterone secretion is affected by receptor tyrosine kinase c-Kit and anoctamin 1 activation in mouse Leydig cells

  • Ko, Eun-A;Woo, Min Seok;Kang, Dawon
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.2
    • /
    • pp.87-95
    • /
    • 2022
  • Receptor tyrosine kinase c-Kit, a marker found on interstitial cells of Cajal (ICCs), is expressed in Leydig cells, which are testicular interstitial cells. The expression of other ICC markers has not yet been reported. In this study, we investigated the expression of c-Kit and anoctamin 1 (ANO1), another ICC marker, in mouse testes. In addition, the relationship between c-Kit and ANO1 expression and Leydig cell function was investigated. We observed that c-Kit and ANO1 were predominantly expressed in mouse Leydig cells. The mRNA and protein of c-Kit and ANO1 were expressed in TM3, a mouse Leydig cell line. LH induced an increase in intracellular Ca2+ concentration, membrane depolarization, and testosterone secretion, whereas these signals were inhibited in the presence of c-Kit and ANO1 inhibitors. These results show that c-Kit and ANO1 are expressed in Leydig cells and are involved in testosterone secretion. Our findings suggest that Leydig cells may act as ICCs in testosterone secretion.

Scrotal pyocele secondary to gastrointestinal perforation in infants: a case series

  • Soo-Hong Kim;Yong-Hoon Cho;Hae-Young Kim;Narae Lee;Young Mi Han;Shin Yun Byun
    • Journal of Yeungnam Medical Science
    • /
    • v.40 no.1
    • /
    • pp.86-90
    • /
    • 2023
  • Pyocele in infants is rarely described in the literature, but it is an emergent condition that requires rapid recognition and treatment to prevent testicular loss. If peritonitis due to gastrointestinal perforation occurs, abdominal contamination may spread through a patent processus vaginalis in an infant, which may lead to pyocele. We report the cases of three infants with scrotal pyocele due to the spread of infection or inflammatory material from the intraperitoneal cavity through a patent processus vaginalis. Two infants were surgically treated, while the other was treated with percutaneous aspiration and intravenous antibiotic administration. Although rare, pyocele should be considered in the differential diagnosis of acute scrotum in infants, especially in infants who previously had peritonitis due to gastrointestinal perforation.

Testicular Development and Serum Levels of Gonadal Steroids Hormone during the Annual Reproductive Cycle of the Male Koran Dark Sleeper, Odontobutis platycephala (Iwata et Jeon) (동사리, Odontobutis platycephala (Iwata et jeon) 수컷의 생식주기에 따른 정소 발달과 혈중 생식소 스테로이드의 변화)

  • 이원교;양석우
    • Journal of Aquaculture
    • /
    • v.11 no.4
    • /
    • pp.475-485
    • /
    • 1998
  • To clarify annual reproductive cycle of Koran dark sleeper, odontobutis platycephala, we examined the seasonal changes of gonadosomatic index(GSI), testicular development stages and sex steroid hormones in blood from December 1995 to November 1997. Testis was podlike shape from July to October, and tadpole-like shape from November because of its expanded posterior part. GSI was 0.14~0.18 from July to September and increased to $0.43{\pm}0.04$ in October and then was not changed significantly until February. GSI was reincreased to $0.52{\pm}0.09$ from March and then was kept at similer levels until May, but fell down to $0.28{\pm}0.05$ in June. As results of histological observation, testis was divided into 3 parts(anterior, boundary, posterior) in the development progress of germ cells. In July, the testis was composed of only spermatogonia without seminiferous tubules in most fishes. In the anterior part of testis, the ferquency of spermatogenesis stage seminiferous tubules appearing in August was more than 80% from September to December. decreased gradually from January to March and drastically in April, and then disappeared in June. The frequency of spermiogenesis stage seminiferous tubules appearing in December, increased gradually from January to March and drastically to 80% in April, and reached to 90% the highest levels of the year in June. Post-spawning stage seminiferous tubules did not appear throughout the year. The frequency of spermatogonia was 100% and 65% in July and August, and less than 20% in the rest period of the year. In the boundary part, the frequency of spermatogenesis stage seminiferous tubules appearing in August increased from September and reached to 82% in November, decreased from December, adn disappeared in March. The frequency of spermiogenesis stage seminiferous tubules appearing in November was less than 18% until February, and increased to 29%~57% from March to June. The frequency of post-spawning stage seminiferous tubules appeared 12%~25% only from March to June. The frequency of spermatogonia was 100% in July, decreased to 85% in August and 10% in November, and increased gradually from December to 50% in April, and decreased again from May to June. In the posterior part, seminiferous tubules with some seminiferous tubules increased drastically 80%~85% in August and September, decreased drastically from October to November and remained below 10% until February, and disappeared after March. The frequency of spermiogenesis stage seminiferous tubules appearing in August increased sharply from October and reached to 75% in November. decreased to 15% in December and no significant changes until March, and disappeared after April. The frequency of post-spawning stage seminiferous tubules appearing very early in November increased to 82% in December and 85%~95% until June. The frequency of spermatogonia was 100% in July, decreased drastically to 15% in August, disappeared from October to Mrch, but reappeared from April and kept at less than 10% until June. The blood level of testosterone (T) increrased gradually from August was $0.61{\pm}0.09 ng/m\ell$ in November, increrased drastically to $3.99{\pm}1.22 ng/m\ell$ in December and maintained at in similar level until March, and decreased to $0.25{\pm}0.14 ng/m{\ell} ~ 0.17{\pm}0.13ng/m{\ell}$ in April and May and no significant changes until July (P<0.05). The blood level of 17, 20 -dihydroxy-4-pregnen-3-one $ng/m{\ell}$in the rest of year without significant changes(P<0.05). Taken together these results, the germ cell development of testis progressed in the order of posterior, boundary, anterior part during annual reproductive cycle in Korean dark sleeper. The testicular cycle of Korean dark sleeper was as follows. The anterior part of testis : i.e. spermatogonial proliferation period (July), early maturation period (from August to November), mid maturation period (from December to March), late maturation period (from April to May) and functional maturation period (June) were elucidated. The boundary of testis, i.e. spermatogonial proliferation period (July), early maturation period (from August to October), mid maturation period (from November to February) and the coexistence period of late maturation, functional maturation and post-spawn (from March to June) were elucidated. The posterior of testis, i.e. spermatogonial proliferation period (July), mid maturation period (from August ot September), late maturation period (October), functional maturation period (November) and post-spawn period (from December to June) were elucidated. It was showed that the changes of sex steroid hormone in blood played a important roles in the annual reproductive cycle of Korean dark sleeper.

  • PDF

Advancements in the treatment of pediatric acute leukemia and brain tumor - continuous efforts for 100% cure

  • Ju, Hee Young;Hong, Che Ry;Shin, Hee Young
    • Clinical and Experimental Pediatrics
    • /
    • v.57 no.10
    • /
    • pp.434-439
    • /
    • 2014
  • Treatment outcomes of pediatric cancers have improved greatly with the development of improved treatment protocols, new drugs, and better supportive measures, resulting in overall survival rates greater than 70%. Survival rates are highest in acute lymphoblastic leukemia, reaching more than 90%, owing to risk-based treatment through multicenter clinical trials and protocols developed to prevent central nervous system relapse and testicular relapse in boys. New drugs including clofarabine and nelarabine are currently being evaluated in clinical trials, and other targeted agents are continuously being developed. Chimeric antigen receptor-modified T cells are now attracting interest for the treatment of recurrent or refractory disease. Stem cell transplantation is still the most effective treatment for pediatric acute myeloid leukemia (AML). However, in order to reduce treatment-related death after stem cell transplantation, there is need for improved treatments. New drugs and targeted agents are also needed for improved outcome of AML. Surgery and radiation therapy have been the mainstay for brain tumor treatment. However, chemotherapy is becoming more important for patients who are not eligible for radiotherapy owing to age. Stem cell transplant as a means of high dose chemotherapy and stem cell rescue is a new treatment modality and is often repeated for improved survival. Drugs such as temozolomide are new chemotherapeutic options. In order to achieve 100% cure in children with pediatric cancer, every possible treatment modality and effort should be considered.

Overexpression of SOX15 Inhibits Proliferation of NT2/D1 Cells Derived from a Testicular Embryonal Cell Carcinoma

  • Yan, Hong-Tao;Shinka, Toshikatsu;Sato, Youichi;Yang, Xin-Jun;Chen, Gang;Sakamoto, Kozue;Kinoshita, Keigo;Aburatani, Hiroyuki;Nakahori, Yutaka
    • Molecules and Cells
    • /
    • v.24 no.3
    • /
    • pp.323-328
    • /
    • 2007
  • SOX (Sry-related HMG box) family proteins, which have an evolutionarily conserved DNA binding domain, have crucial roles in cell differentiation. However, their target genes remain enigmatic. Some members of the SOX family may have roles in regulation of cell proliferation. We established stable NT2/D1 cell lines overexpressing SOX15 (SOX15-NT2/D1), and a modified 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that the SOX15-NT2/D1 cells exhibited significantly slower growth than the controls. Flow cytometry analysis revealed that an increased fraction of the SOX15-NT2/D1 cells were in G1-G0. In addition, a microarray analysis identified 26 genes that were up-regulated in the SOX15-NT2/D1 cells, but none that were down-regulated genes. Among the up-regulated genes, IGFBP5, S100A4, ID2, FABP5, MTSS1, PDCD4 have been shown to be related to cell proliferation and/or the cell cycle.