• Title/Summary/Keyword: test valve

Search Result 805, Processing Time 0.027 seconds

A Study of Valve-train Life Time Estimate in Engine Durability Test (2) (엔진내구시험을 통한 Valve Train 수명예측에 관한 연구 (2))

  • Kim, Jaejin;Lee, Hwanhui;Myung, Wanghee;Min, Byengdu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.75-80
    • /
    • 2014
  • In previous study, make an attempt to estimate exhaust valve seat and seat-ring wear acceleration factor for engine durability test with measuring and consideration of wear mechanism. But found abnormal initial wear rate in exhaust valve seat-ring. And have to improve exhaust valve seat-ring wear rate for reliability reason, because next GDI/Turbo engine is based on this engine and GDI/Turbo engine have higher combustion pressure and higher thermal load. In this study, Trying to find the cause of abnormal wear factor, improve valve-train durability by change specification & design of parts and verify variant parts for improving durability of valve-train. And then I would like to propose a design guide line of valve-train system in a reliability point of view, besides make a complement of previous study.

A Study on Exhaust Gas Characteristics and Engine Performance of EGR Valve Installed Engine for Development of EGR Valve Test System (EGR 밸브 평가 장치 개발을 위한 EGR 장착 엔진 성능 및 배출 가스 특성 연구)

  • Na, D.H.;Ko, C.S.;Seo, H.J.;Lee, C.E.
    • Journal of Drive and Control
    • /
    • v.9 no.4
    • /
    • pp.52-57
    • /
    • 2012
  • In this study, in order to understand contents and ranges of design for the EGR Valve test system for improving quality and performance of EGR Valve, engine performance and exhaust gas characteristic of 3L-class diesel engine was analyzed. Experimental operation of engine performance test was performed with 50% engine load and 20% and 100% opening ratio of EGR Valve. From test of performance and exhaust gas characteristic of engine, torque output of engine and temperature and pressure of inlet and outlet of EGR Valve were measured. As a result, for design of EGR Valve test system, input fluid flow of EGR Valve must be set the same amount with exhaust gas flow that was below of engine speed of 2,500 rpm, and temperature of inlet of EGR Valve must be set under about $510^{\circ}C$. And the difference of temperature between inlet and outlet of EGR Valve must be over than about $200^{\circ}C$. Exhaust gas of inlet and outlet of EGR Valve were under 1 bar that was not considerable, and the difference of pressure between inlet and outlet of EGR Valve were under 1 bar that could not effect on mechanical operation of EGR Valve.

Effect of Differential Pressure on the Performance of Motor Operated Flexible Wedge Gate Valve (차압이 모터구동 Flexible Wedge형 게이트밸브의 성능에 미치는 영향)

  • Kim, Dae-Woong;Yoo, Seong-Yeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.2 s.257
    • /
    • pp.151-158
    • /
    • 2007
  • The mechanism of power transmission from motor torque to stem thrust and the operation characteristic of each stroke position are analyzed using the diagnostic signal, and effects of differential pressure on the performance of motor operated flexible wedge gate valve are investigated. Test facility consists of 76 mm motor operated valve(flexible wedge type), pump and pipe system. Static and dynamic test are performed separately, and two differential pressure conditions are applied in the dynamic test. To evaluate the performance of valve, test signals for the torque, thrust, current, voltage and stroke length are acquired by using UDS which is diagnosis device for motor operated valve, and each diagnostic signal is analyzed and compared. The characteristic of valve performance factors such as stem factor, rate of loading, valve factor, are evaluated, and these factors are found to be severely influenced by the fluid differential pressure.

Development of Valve Balance Test Equipment for Power Steering Gear (파워 스티어링 기어의 밸브 밸런스 테스트 장비 개발)

  • Go, S.J.;Park, M.K.;Won, T.H.;Kim, H.S.;Kim, K.H.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.1
    • /
    • pp.65-71
    • /
    • 2011
  • Steering gear is the part of an automobile that change circular movement of steering wheel to lateral movement of rack to change driving direction. This can be classified with manual and power steering gear. Manual steering gear is operated only with human power while power steering gear use oil pressure support. These days power steering gear is more common to almost of the car. Recently a korean company manufactures a speed sensitive power steering which provide variable steering feel depend on the speed of car. The Broens company of Australia produces and exports the test equipments for the manufacture of power steering valves and assemblies to major vehicle manufactures. Some korean companies imported the test equipments from Australia, thus increasing the cost. The purpose of this study is development of the valve balance test equipment to measure the valve torque of the power steering gear. This study designed and manufactured the valve balance test equipment to take hold of the power steering valve using CAE analysis. In order to evaluate the performance of the developed valve balance test equipment, the R&R tests have been conducted.

Development of Performance Test Equipment for Easy-Hill Assist Valve (EHA 밸브 성능시험 장치 개발)

  • Jung, G.H.
    • Journal of Drive and Control
    • /
    • v.11 no.4
    • /
    • pp.61-67
    • /
    • 2014
  • When a manual transmission equipped car stops on an incline where the nose of the car is higher than the rear, hill-start control or hill-holder could prevent the vehicle from rolling backward as the car moves forward. The easy-hill assist valve consists of a check valve and a needle type ON/OFF solenoid valve connected in parallel; it is a hydraulic actuator that can maintain brake pressure using an electrical signal from the ECU. As the EHA valve is a safety-related component of the brake system, high reliability as well as superior dynamic performance is required for it to be applied in commercial vehicles. This paper presents the design of the EHA valve as a piece of equipment that can simulate the brake actuation pressure with a pressurizing piston. Following specific test standards, the experimental results validate the implemented functions of the test equipment, proving the test stand to be effective for the performance and endurance of the EHA valve.

Development of automatic measurement system for dynamic respose time of pneumatic solenoid valve (공압밸브의 동적응답 특성측정 자동화 시스템 개발)

  • 강보식;김형의
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.974-978
    • /
    • 1991
  • Electro-pneumatic valve is an electro-mechanical device which converts electric signal into pneumatic flow mu or pressure. A measurement of dynamic response time is very important to evaluate valve performance. Dynamic response time of electro-pneumatic valve has a variation accordance with valve types, operating way and test standard. In this study, automatic measurement system of dynamic response time is composed based on test condition of dynamic response time test standard(CETOP, JIS). Also, in this study test pressure variation characteristics accordance with variation of solenoid excitation power, and we developed dynamic response measurement system enable to compare of and analyze these two characteristics.

  • PDF

A Test System of Valve and Poles for Large Scale Inverter using Resonant Circuit (공진회로를 이용한 대용량 인버터 구성용 밸브 및 폴 시험설비에 관한 연구)

  • Han, Young-Seong;Chung, Chung-Choo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.971-976
    • /
    • 2011
  • This paper proposes a test system for a valve and poles building blocks used for large scale inverters such as STATCOM, SSSC, UPFC and VSC HVDC. Power semiconductors in the valve are normally connected in series to withstand switching voltage much larger than the voltage rating of a single power semiconductor. Therefore, there is a need to verify if the dynamic voltage sharing during switching in a valve is satisfactory. In this paper, we propose a test system that provides the necessary test condition: voltage and current in the valve using resonant circuits. A test scheme for a single phase inverter consisting two poles is also proposed. The performance of the inverter pole has to be verified at the factory test, before the system is installed at the site to secure the reliability of the system. The proposed scheme makes it possible to confirm if the pole can withstand voltage and current switching condition and handle loss.

Voltage source multilevel module converter valve test circuit research (전압원 멀티레벨 컨버터 밸브 시험회로 연구)

  • Yuan, Zhen;Lee, Jinhee;Jung, Teagsun;Baek, Seungtaek
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.79-80
    • /
    • 2014
  • Voltage source multilevel module converter attracts more and more attention recently. The core component of the voltage source multilevel module converter is the valve based on IGBT. So the test circuit for the valve is very important, reliable test method can guarantee the converter valve design meet the operation requirement. This paper analyzes the valve voltage and current stress during the operation, and according to IEC standard test requirement, object, condition, introduces a kind of test circuit. Finally, through the simulation model, to verify the test circuit can provide the proper test condition for the voltage source multilevel module converter valve.

  • PDF

Manufacturing and Performance Test of Obsolete Valve in NPP using DED Metal 3D Printing Technology (원전 단종 밸브의 DED 방식 금속 3D프린팅 제작 및 성능시험)

  • Kyungnam Jang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.2
    • /
    • pp.75-82
    • /
    • 2021
  • The 3D printing technology is one of the fourth industrial revolution technology that drives innovation in the manufacturing process, and should be applied to nuclear industry for various purposes according to the manufacturing trend change. In nuclear industry, it can be applied to manufacture obsolete items and new designed parts in advanced reactors or small modular reactors (SMRs), replacing the traditional manufacturing technologies. A gate valve body was manufactured, which was obsolete in nuclear power plant, using DED(Directed Energy Deposition) metal 3D printing technology after restoring design characteristics including 3D design drawing by reverse engineering. The 3D printed valve body was assembled with commercial parts such as seat-ring, disk, stem, and actuator for performance test. For the valve assembly, including 3D printed valve body, several tests were performed, including pressure test, end-loading test, and seismic test according to KEPIC MGG and KEPIC MFC. In the pressure test, hydraulic pressure of 391kgf/cm2 was applied to 3D printed valve body, and no leak was detected. Also the 3D printed valve assembly was performed well in end-loading and seismic tests.

A Study of Korean (Industrial) Standards for Pneumatic Servo Valve (공압서보밸브 KS규격 정립에 관한 연구)

  • 김동수;이원희;최병오
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1231-1234
    • /
    • 2003
  • Pneumatic servo valve which is widely applied in industrial world is advanced technology compounded with electric, electronic and machine. And It is consist of Linear Force Motor. Spool Commutation Mechanism and Microprocessor. In this study, we accomplished test method of Linear Force motor test, Static characteristic test, Dynamic characteristic test for KS(Koran industrial standard) of Pneumatic servo valve. we accomplished study about the main item of Static characteristic test which is related to unload flow characteristic test. And Dynamic characteristic test was step input test and frequency response test. Specially about frequency response test, There was a difficulty resulting from the time delay problem caused by the basic compressibility of air. In order to solve the problem in this study. we proposed two methods. First, displacement of the servo valve spool was directly measured by using a laser sensor. Second, method of calculating control flow by measuring pressure and temperature of chamber.

  • PDF