• Title/Summary/Keyword: test system

Search Result 26,819, Processing Time 0.064 seconds

The Brand Personality Effect: Communicating Brand Personality on Twitter and its Influence on Online Community Engagement (브랜드 개성 효과: 트위터 상의 브랜드 개성 전달이 온라인 커뮤니티 참여에 미치는 영향)

  • Cruz, Ruth Angelie B.;Lee, Hong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.67-101
    • /
    • 2014
  • The use of new technology greatly shapes the marketing strategies used by companies to engage their consumers. Among these new technologies, social media is used to reach out to the organization's audience online. One of the most popular social media channels to date is the microblogging platform Twitter. With 500 million tweets sent on average daily, the microblogging platform is definitely a rich source of data for researchers, and a lucrative marketing medium for companies. Nonetheless, one of the challenges for companies in developing an effective Twitter campaign is the limited theoretical and empirical evidence on the proper organizational usage of Twitter despite its potential advantages for a firm's external communications. The current study aims to provide empirical evidence on how firms can utilize Twitter effectively in their marketing communications using the association between brand personality and brand engagement that several branding researchers propose. The study extends Aaker's previous empirical work on brand personality by applying the Brand Personality Scale to explore whether Twitter brand communities convey distinctive brand personalities online and its influence on the communities' level or intensity of consumer engagement and sentiment quality. Moreover, the moderating effect of the product involvement construct in consumer engagement is also measured. By collecting data for a period of eight weeks using the publicly available Twitter application programming interface (API) from 23 accounts of Twitter-verified business-to-consumer (B2C) brands, we analyze the validity of the paper's hypothesis by using computerized content analysis and opinion mining. The study is the first to compare Twitter marketing across organizations using the brand personality concept. It demonstrates a potential basis for Twitter strategies and discusses the benefits of these strategies, thus providing a framework of analysis for Twitter practice and strategic direction for companies developing their use of Twitter to communicate with their followers on this social media platform. This study has four specific research objectives. The first objective is to examine the applicability of brand personality dimensions used in marketing research to online brand communities on Twitter. The second is to establish a connection between the congruence of offline and online brand personalities in building a successful social media brand community. Third, we test the moderating effect of product involvement in the effect of brand personality on brand community engagement. Lastly, we investigate the sentiment quality of consumer messages to the firms that succeed in communicating their brands' personalities on Twitter.

Genotype $\times$ Environment Interaction of Rice Yield in Multi-location Trials (벼 재배 품종과 환경의 상호작용)

  • 양창인;양세준;정영평;최해춘;신영범
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.6
    • /
    • pp.453-458
    • /
    • 2001
  • The Rural Development Administration (RDA) of Korea now operates a system called Rice Variety Selection Tests (RVST), which are now being implemented in eight Agricultural Research and Extension Services located in eight province RVST's objective is to provide accurate yield estimates and to select well-adapted varieties to each province. Systematic evaluation of entries included in RVST is a highly important task to select the best-adapted varieties to specific location and to observe the performance of entries across a wide range of test sites within a region. The rice yield data in RVST for ordinary transplanting in Kangwon province during 1997-2000 were analyzed. The experiments were carried out in three replications of a random complete block design with eleven entries across five locations. Additive Main effects and Multiplicative Interaction (AMMI) model was employed to examine the interaction between genotype and environment (G$\times$E) in the biplot form. It was found that genotype variability was as high as 66%, followed by G$\times$E interaction variability, 21%, and variability by environment, 13%. G$\times$E interaction was partitioned into two significant (P<0.05) principal components. Pattern analysis was used for interpretation on G$\times$E interaction and adaptibility. Major determinants among the meteorological factors on G$\times$E matrix were canopy minimum temperature, minimum relative humidity, sunshine hours, precipitation and mean cloud amount. Odaebyeo, Obongbyeo and Jinbubyeo were relatively stable varieties in all the regions. Furthermore, the most adapted varieties in each region, in terms of productivity, were evaluated.

  • PDF

Effects of Harvesting Methods on Properties of Cured-leaves in Aromatic Tobacco Production (향끽미종의 수확방법이 건조엽특성에 미치는 영향)

  • 이철환;조명조
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.2
    • /
    • pp.177-183
    • /
    • 1989
  • Lower leaves of aromatic tobacco are also much lower in Quality than upper leaves. So feasibility test of no harvesting and curing of lower leaves was conducted under high planting density and high nitrogen conditions with conventional cultural system. Effect of harvesting time on yield and Quality were investigated under 2 nitrogen levels. Among harvesting methods of conventional harvest with priming under high planting density, no-harvest of first priming, removal of lower leaves which relevant to first prime stalk before maturity, no-harvest of first and second priming. no-harvesting or pruning of first prime stalk before maturity was best in yield, price and in crude income. The shortor the harvest period became, the lower the yield, price and contents of reducing sugar and nicotine became, but reverse in this trends with total nitrogen and protein nitrogen. So 6 or 8 days interval of harvest is most recommendable.

  • PDF

Validation of the Proximity of Clothing to Self Scale for Older Persons (의복의 자아 근접성 척도 검증 - 노년층을 대상으로 -)

  • Lee, Young-A;Sontag, M. Suzanne
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.6 s.165
    • /
    • pp.848-858
    • /
    • 2007
  • Sontag and Lee (2004) recently developed an objectively measurable instrument, the Proximity of Clothing to Self(PCS) Scale, which measured the psychological closeness of clothing to self. They validated a 4-factor, 24-item PCS Scale for use with adolescents and identified the need for confirmation of the factor structure with other age groups. This paper extends the work of Sontag and Lee by employing the PCS Scale with older persons, age 65 and over, and reports the validation of a 3-factor, 19-item PCS Scale for older persons. A mail survey was sent to a national random sample of 1,700 older Persons by means of a list purchased from a U.S. survey sampling company in late November 2004. Total usuable number of respondents was 250 with an adjusted response rate of 15.6 percent. Three analytical rounds of confirmatory factor analysis(CFA) to test the construct validity of the PCS Scale were conducted by using AMOS 5.0(Analysis of Moment Structures), one of several structural equation modeling(SEM) programs. Completion of three rounds of the CFA resulted in a 3-factor, 19-item PCS Scale with demonstrated construct validity and reliability for older persons. The three PCS dimensions are clothing in relation to 1) self as structure-process(PCS Dimension 1-2-3 combined), 2) self-esteem-evaluative and affective processes(PCS Dimension 4-5 combined), and 3) body image and body cathexis(PCS Dimension 6). The initially hypothesized 6-factor scale(Sontag & Lee, 2004) was not confirmed for adolescents in their study nor with older persons in this study. In addition, the 4-factor solution for the adolescent group did not hold for older persons. It appears that the self-system of older persons is more integrated than may be true for younger individuals. Recommendations for future testing of construct validity of the PCS Scale are made.

Adhesion Characteristics and the High Pressure Resistance of Biofilm Bacteria in Seawater Reverse Osmosis Desalination Process (역삼투 해수담수화 공정 내 바이오필름 형성 미생물의 부착 및 고압내성 특성)

  • Jung, Ji-Yeon;Lee, Jin-Wook;Kim, Sung-Youn;Kim, In-S.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.1
    • /
    • pp.51-57
    • /
    • 2009
  • Biofouling in seawater reverse osmosis (SWRO) desalination process causes many problems such as flux decline, biodegradation of membrane, increased cleaning time, and increased energy consumption and operational cost. Therefore biofouling is considered as the most critical problem in system operation. To control biofouling in early stage, detection of the most problematic bacteria causing biofouling is required. In this study, six model bacteria were chosen; Bacillus sp., Flavobacterium sp., Mycobacterium sp., Pseudomonas aeruginosa, Pseudomonas fluorescens, and Rhodobacter sp. based on report in the literature and phylogenetic analysis of seawater intake and fouled RO membrane. The adhesion to RO membrane, the high pressure resistance, and the hydrophobicity of the six model bacteria were examined to find out their fouling potential. Rhodobacter sp. and Mycobacterium sp. were found to attach very well to RO membrane surface compared to others used in this study. The test of hydrophobicity revealed that the bacteria which have high hydrophobicity or similar contact angle with RO membrane ($63^{\circ}$ of contact angle) easily attached to RO membrane surface. P. aeruginosa which is highly hydrophilic ($23.07^{\circ}$ of contact angle) showed the least adhesion characteristic among six model bacteria. After applying a pressure of 800 psi to the sample, Rhodobacter sp. was found to show the highest reduction rate; with 59-73% of the cells removed from the membrane under pressure. P. fluorescens on the other hand analyzed as the most pressure resistant bacteria among six model bacteria. The difference between reduction rates using direct counting and plate counting indicates that the viability of each model bacteria was affected significantly from the high pressure. Most cells subjected to high pressure were unable to form colonies even thought they maintained their structural integrity.

Attention to the Internet: The Impact of Active Information Search on Investment Decisions (인터넷 주의효과: 능동적 정보 검색이 투자 결정에 미치는 영향에 관한 연구)

  • Chang, Young Bong;Kwon, YoungOk;Cho, Wooje
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.117-129
    • /
    • 2015
  • As the Internet becomes ubiquitous, a large volume of information is posted on the Internet with exponential growth every day. Accordingly, it is not unusual that investors in stock markets gather and compile firm-specific or market-wide information through online searches. Importantly, it becomes easier for investors to acquire value-relevant information for their investment decision with the help of powerful search tools on the Internet. Our study examines whether or not the Internet helps investors assess a firm's value better by using firm-level data over long periods spanning from January 2004 to December 2013. To this end, we construct weekly-based search volume for information technology (IT) services firms on the Internet. We limit our focus to IT firms since they are often equipped with intangible assets and relatively less recognized to the public which makes them hard-to measure. To obtain the information on those firms, investors are more likely to consult the Internet and use the information to appreciate the firms more accurately and eventually improve their investment decisions. Prior studies have shown that changes in search volumes can reflect the various aspects of the complex human behaviors and forecast near-term values of economic indicators, including automobile sales, unemployment claims, and etc. Moreover, search volume of firm names or stock ticker symbols has been used as a direct proxy of individual investors' attention in financial markets since, different from indirect measures such as turnover and extreme returns, they can reveal and quantify the interest of investors in an objective way. Following this line of research, this study aims to gauge whether the information retrieved from the Internet is value relevant in assessing a firm. We also use search volume for analysis but, distinguished from prior studies, explore its impact on return comovements with market returns. Given that a firm's returns tend to comove with market returns excessively when investors are less informed about the firm, we empirically test the value of information by examining the association between Internet searches and the extent to which a firm's returns comove. Our results show that Internet searches are negatively associated with return comovements as expected. When sample is split by the size of firms, the impact of Internet searches on return comovements is shown to be greater for large firms than small ones. Interestingly, we find a greater impact of Internet searches on return comovements for years from 2009 to 2013 than earlier years possibly due to more aggressive and informative exploit of Internet searches in obtaining financial information. We also complement our analyses by examining the association between return volatility and Internet search volumes. If Internet searches capture investors' attention associated with a change in firm-specific fundamentals such as new product releases, stock splits and so on, a firm's return volatility is likely to increase while search results can provide value-relevant information to investors. Our results suggest that in general, an increase in the volume of Internet searches is not positively associated with return volatility. However, we find a positive association between Internet searches and return volatility when the sample is limited to larger firms. A stronger result from larger firms implies that investors still pay less attention to the information obtained from Internet searches for small firms while the information is value relevant in assessing stock values. However, we do find any systematic differences in the magnitude of Internet searches impact on return volatility by time periods. Taken together, our results shed new light on the value of information searched from the Internet in assessing stock values. Given the informational role of the Internet in stock markets, we believe the results would guide investors to exploit Internet search tools to be better informed, as a result improving their investment decisions.

Bankruptcy Type Prediction Using A Hybrid Artificial Neural Networks Model (하이브리드 인공신경망 모형을 이용한 부도 유형 예측)

  • Jo, Nam-ok;Kim, Hyun-jung;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.79-99
    • /
    • 2015
  • The prediction of bankruptcy has been extensively studied in the accounting and finance field. It can have an important impact on lending decisions and the profitability of financial institutions in terms of risk management. Many researchers have focused on constructing a more robust bankruptcy prediction model. Early studies primarily used statistical techniques such as multiple discriminant analysis (MDA) and logit analysis for bankruptcy prediction. However, many studies have demonstrated that artificial intelligence (AI) approaches, such as artificial neural networks (ANN), decision trees, case-based reasoning (CBR), and support vector machine (SVM), have been outperforming statistical techniques since 1990s for business classification problems because statistical methods have some rigid assumptions in their application. In previous studies on corporate bankruptcy, many researchers have focused on developing a bankruptcy prediction model using financial ratios. However, there are few studies that suggest the specific types of bankruptcy. Previous bankruptcy prediction models have generally been interested in predicting whether or not firms will become bankrupt. Most of the studies on bankruptcy types have focused on reviewing the previous literature or performing a case study. Thus, this study develops a model using data mining techniques for predicting the specific types of bankruptcy as well as the occurrence of bankruptcy in Korean small- and medium-sized construction firms in terms of profitability, stability, and activity index. Thus, firms will be able to prevent it from occurring in advance. We propose a hybrid approach using two artificial neural networks (ANNs) for the prediction of bankruptcy types. The first is a back-propagation neural network (BPN) model using supervised learning for bankruptcy prediction and the second is a self-organizing map (SOM) model using unsupervised learning to classify bankruptcy data into several types. Based on the constructed model, we predict the bankruptcy of companies by applying the BPN model to a validation set that was not utilized in the development of the model. This allows for identifying the specific types of bankruptcy by using bankruptcy data predicted by the BPN model. We calculated the average of selected input variables through statistical test for each cluster to interpret characteristics of the derived clusters in the SOM model. Each cluster represents bankruptcy type classified through data of bankruptcy firms, and input variables indicate financial ratios in interpreting the meaning of each cluster. The experimental result shows that each of five bankruptcy types has different characteristics according to financial ratios. Type 1 (severe bankruptcy) has inferior financial statements except for EBITDA (earnings before interest, taxes, depreciation, and amortization) to sales based on the clustering results. Type 2 (lack of stability) has a low quick ratio, low stockholder's equity to total assets, and high total borrowings to total assets. Type 3 (lack of activity) has a slightly low total asset turnover and fixed asset turnover. Type 4 (lack of profitability) has low retained earnings to total assets and EBITDA to sales which represent the indices of profitability. Type 5 (recoverable bankruptcy) includes firms that have a relatively good financial condition as compared to other bankruptcy types even though they are bankrupt. Based on the findings, researchers and practitioners engaged in the credit evaluation field can obtain more useful information about the types of corporate bankruptcy. In this paper, we utilized the financial ratios of firms to classify bankruptcy types. It is important to select the input variables that correctly predict bankruptcy and meaningfully classify the type of bankruptcy. In a further study, we will include non-financial factors such as size, industry, and age of the firms. Thus, we can obtain realistic clustering results for bankruptcy types by combining qualitative factors and reflecting the domain knowledge of experts.

The Intelligent Determination Model of Audience Emotion for Implementing Personalized Exhibition (개인화 전시 서비스 구현을 위한 지능형 관객 감정 판단 모형)

  • Jung, Min-Kyu;Kim, Jae-Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.1
    • /
    • pp.39-57
    • /
    • 2012
  • Recently, due to the introduction of high-tech equipment in interactive exhibits, many people's attention has been concentrated on Interactive exhibits that can double the exhibition effect through the interaction with the audience. In addition, it is also possible to measure a variety of audience reaction in the interactive exhibition. Among various audience reactions, this research uses the change of the facial features that can be collected in an interactive exhibition space. This research develops an artificial neural network-based prediction model to predict the response of the audience by measuring the change of the facial features when the audience is given stimulation from the non-excited state. To present the emotion state of the audience, this research uses a Valence-Arousal model. So, this research suggests an overall framework composed of the following six steps. The first step is a step of collecting data for modeling. The data was collected from people participated in the 2012 Seoul DMC Culture Open, and the collected data was used for the experiments. The second step extracts 64 facial features from the collected data and compensates the facial feature values. The third step generates independent and dependent variables of an artificial neural network model. The fourth step extracts the independent variable that affects the dependent variable using the statistical technique. The fifth step builds an artificial neural network model and performs a learning process using train set and test set. Finally the last sixth step is to validate the prediction performance of artificial neural network model using the validation data set. The proposed model is compared with statistical predictive model to see whether it had better performance or not. As a result, although the data set in this experiment had much noise, the proposed model showed better results when the model was compared with multiple regression analysis model. If the prediction model of audience reaction was used in the real exhibition, it will be able to provide countermeasures and services appropriate to the audience's reaction viewing the exhibits. Specifically, if the arousal of audience about Exhibits is low, Action to increase arousal of the audience will be taken. For instance, we recommend the audience another preferred contents or using a light or sound to focus on these exhibits. In other words, when planning future exhibitions, planning the exhibition to satisfy various audience preferences would be possible. And it is expected to foster a personalized environment to concentrate on the exhibits. But, the proposed model in this research still shows the low prediction accuracy. The cause is in some parts as follows : First, the data covers diverse visitors of real exhibitions, so it was difficult to control the optimized experimental environment. So, the collected data has much noise, and it would results a lower accuracy. In further research, the data collection will be conducted in a more optimized experimental environment. The further research to increase the accuracy of the predictions of the model will be conducted. Second, using changes of facial expression only is thought to be not enough to extract audience emotions. If facial expression is combined with other responses, such as the sound, audience behavior, it would result a better result.

Ontology-Based Process-Oriented Knowledge Map Enabling Referential Navigation between Knowledge (지식 간 상호참조적 네비게이션이 가능한 온톨로지 기반 프로세스 중심 지식지도)

  • Yoo, Kee-Dong
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.61-83
    • /
    • 2012
  • A knowledge map describes the network of related knowledge into the form of a diagram, and therefore underpins the structure of knowledge categorizing and archiving by defining the relationship of the referential navigation between knowledge. The referential navigation between knowledge means the relationship of cross-referencing exhibited when a piece of knowledge is utilized by a user. To understand the contents of the knowledge, a user usually requires additionally information or knowledge related with each other in the relation of cause and effect. This relation can be expanded as the effective connection between knowledge increases, and finally forms the network of knowledge. A network display of knowledge using nodes and links to arrange and to represent the relationship between concepts can provide a more complex knowledge structure than a hierarchical display. Moreover, it can facilitate a user to infer through the links shown on the network. For this reason, building a knowledge map based on the ontology technology has been emphasized to formally as well as objectively describe the knowledge and its relationships. As the necessity to build a knowledge map based on the structure of the ontology has been emphasized, not a few researches have been proposed to fulfill the needs. However, most of those researches to apply the ontology to build the knowledge map just focused on formally expressing knowledge and its relationships with other knowledge to promote the possibility of knowledge reuse. Although many types of knowledge maps based on the structure of the ontology were proposed, no researches have tried to design and implement the referential navigation-enabled knowledge map. This paper addresses a methodology to build the ontology-based knowledge map enabling the referential navigation between knowledge. The ontology-based knowledge map resulted from the proposed methodology can not only express the referential navigation between knowledge but also infer additional relationships among knowledge based on the referential relationships. The most highlighted benefits that can be delivered by applying the ontology technology to the knowledge map include; formal expression about knowledge and its relationships with others, automatic identification of the knowledge network based on the function of self-inference on the referential relationships, and automatic expansion of the knowledge-base designed to categorize and store knowledge according to the network between knowledge. To enable the referential navigation between knowledge included in the knowledge map, and therefore to form the knowledge map in the format of a network, the ontology must describe knowledge according to the relation with the process and task. A process is composed of component tasks, while a task is activated after any required knowledge is inputted. Since the relation of cause and effect between knowledge can be inherently determined by the sequence of tasks, the referential relationship between knowledge can be circuitously implemented if the knowledge is modeled to be one of input or output of each task. To describe the knowledge with respect to related process and task, the Protege-OWL, an editor that enables users to build ontologies for the Semantic Web, is used. An OWL ontology-based knowledge map includes descriptions of classes (process, task, and knowledge), properties (relationships between process and task, task and knowledge), and their instances. Given such an ontology, the OWL formal semantics specifies how to derive its logical consequences, i.e. facts not literally present in the ontology, but entailed by the semantics. Therefore a knowledge network can be automatically formulated based on the defined relationships, and the referential navigation between knowledge is enabled. To verify the validity of the proposed concepts, two real business process-oriented knowledge maps are exemplified: the knowledge map of the process of 'Business Trip Application' and 'Purchase Management'. By applying the 'DL-Query' provided by the Protege-OWL as a plug-in module, the performance of the implemented ontology-based knowledge map has been examined. Two kinds of queries to check whether the knowledge is networked with respect to the referential relations as well as the ontology-based knowledge network can infer further facts that are not literally described were tested. The test results show that not only the referential navigation between knowledge has been correctly realized, but also the additional inference has been accurately performed.

Design and Implementation of Web Based Instruction Based on Constructivism for Self-Directed Learning Ablity (구성주의 이론에 기반한 자기주도적 웹 기반 교육의 설계와 구현)

  • Kim Gi-Nam;Kim Eui-Jeong;Kim Chang-Suk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.855-858
    • /
    • 2006
  • First of all, Developing information technology makes it possible to change a paradigm of all kinds of areas, including an education. Students can choose learning goals and objects themselves and acquire not the accumulation of knowledge but the method of their learning. Moreover, Teachers get to be adviser, and students play a key role in teaming. That is, the subject of leaning is students. Constructivism emphasizes the student-oriented environment of education, which corresponds to the characteristics of hypeimedia. In addition, Internet allows us to make a practical plan for constructivism. Web Based Internet provides us with a proper environment to make constructivism practice md causes an education system to change. Sure Web Based Instruction makes them motivated to learn more, they can gain plenty of information regardless of places or time. Besides, they are able to consult more up-to-date information regarding their learning use hypermedia such as an image, audio, video, and test, and effectively communicate with their instructor through a board, an e-mail, a chatting etc. A school and instructors have been making effort to develop a new model of a teaching method to cope with a new environment change. In this thesis, with 'Design and Implementation of Web Based Instruction Based on Constructivism', providing online learner-oriented and indexed video lesson, learners can get chance of self-oriented learning. In addition, learners doesn't have to cover all contents of a lesson but can choose contents they want to have from a indexed list of a lesson, and they ran search contents they want to have with a 'Keyword Search' on a main page, which can make learners improve learner's achievement.

  • PDF