• Title/Summary/Keyword: test beam

Search Result 2,914, Processing Time 0.035 seconds

Experimental Study to fatigue performance of reinforced concrete beam (RC보의 피로성능에 관한 실험적연구)

  • Kim Soon-Chul;Kim Eun-Kyum
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.848-853
    • /
    • 2004
  • This is a basic experimental study elaborated on reinforced concrete beam under load, especially crack behavior, bending stiffness, deflection and strain of concrete and reinforced bar for reinforced concrete and steel fiber reinforced concrete beam in relation to fatigue loading in service ability limit states. Test parameters are concrete strength, volume. and type of steel fiber and fatigue loading in service ability limit states to be changed. In order to obtain the actual conditions of various working loads for the aforesaid reinforced concrete beam, minimum load is applied 10$\%$ of maximum design load and maximum load was applied 60$\%$, 80$\%$ and 100$\%$ respectively. Under the same condition, the test was implemented up to 1 million cycle and the result was thoroughly analyzed and reviewed.

  • PDF

An Experiment of the Externally Prestressed 2-span Concrete Beam (외부 프리스트레스트 콘크리트 2경간 연속보의 휨 실험)

  • Oh, Seung-Hyun;Lee, Sang-Woo;Kang, Won-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.313-316
    • /
    • 2006
  • Externally prestressed structures have many advantages such as easy prestressing control and visible maintenance. Flexural strength of externally prestressed concrete members can be calculated by analysis of internal indeterminacy, which is different from internally prestressed concrete members. However, it needs nonlinear analysis considering member stiffness at strength limit state. Thus most of design codes proposed approximate methods which are empirical, based on test results. To reduce difference between accurate analysis and approximate design methods, many experiments and studies are continued. Since most of the experiments are single span beams. In order to adapt of continuous beam it needs further investigation for the continuous beam. In this study, we carried out externally prestressed 2-span concrete beam test to find out the flexural behavior and strength of externally prestressed concrete members.

  • PDF

A Study on Seismic Performance for CFT Square Column-to-Beam Connections Reinforced with Asymmetric Lower Diaphragms (이형 하부다이아프램으로 보강된 각형 CFT 기둥-보 접합부의 내진성능에 관한 연구)

  • 최성모;윤여상;김요숙;김진호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.163-171
    • /
    • 2003
  • Most of existing beam-to-column connections are reinforced symmetrically because of reverse action cause by earthquake but in the weak-earthquake region like Korea connections reinforced asymmetrically can be used. Specially, the connections between CFT(Concrete Filled Tube) column and H-shape beam can be applied by simplified lower diaphragm. The tensile capacity of Combined Cross Diaphragm for upper reinforcing was tested by simple tension test and four types for lower reinforcing; Combined Cross, None, Horizontal T-bar and Vertical Plate were tested by ANSI/AISC SSPEC 2002 loading program. Horizontal T-bar and stud bolts in vertical flat bar transmit tensile stress from bottom flange of beam to filled concrete. All test specimens were satisfied 0.01 radian of inelastic rotational requirement in ordinary moment frame of AISC seismic provision. As the results of parametric studies, simplified lower diaphragms demonstrated an outstanding strength, stiffness and plastic deformation capacity to use sufficient seismic performance in the field.

  • PDF

Bond behavior of lightweight concretes containing coated pumice aggregate: hinged beam approach

  • Beycioglu, Ahmet;Arslan, Mehmet E.;Bideci, Ozlem S.;Bideci, Alper;Emiroglu, Mehmet
    • Computers and Concrete
    • /
    • v.16 no.6
    • /
    • pp.909-918
    • /
    • 2015
  • This paper presents an experimental study for determining the bond performance of lightweight concretes produced using pumice aggregate coated with colemanite-cement paste. For this purpose, eight hinged beam specimens were produced with four different concrete mixtures. 14 mm deformed bars with $10{\Phi}$ development lengths were selected constant for all test specimens. All the specimens were tested in bending and load-slip values were measured experimentally to determine the effect of colemanite-cement coated pumice aggregate on bond performances of lightweight concretes. Test results showed that, colemanite-cement coated pumice aggregate increases compressive strength and bond performance of the lightweight concretes, considerably.

A Study on the Welding Behavior of A3003 Aluminium Alloy Thin Sheet by Nd : YAG Laser Beam (박판 A3003 Al합금의 Nd : YAG 레이저빔 용접에 관한 연구)

  • 허인석;김병철;김도훈;김진수;이한용
    • Laser Solutions
    • /
    • v.4 no.1
    • /
    • pp.29-38
    • /
    • 2001
  • This work was carried out to investigate the welding behavior of thin A3003 Al alloy sheets by Nd : YAG laser beam. Considering bead shape and mechanical properties, the laser pulse shapes selected were two kinds of 2-division and 3-division by varying power level and pulse duration. In order to obtain optimum conditions, the factorial design method and central composite design method were applied. Tensile test, optical microscopy, micro hardness test and TEM analysis were performed. Due to the annealing caused by thermal effect during laser welding, precipitates were coarsended. The HAZ was softened and failed during tensile test. The hardness of HAZ was lower than that of base metal, since the heat input relieved the work hardening effect and caused grain growth.

  • PDF

Modeling of Beam Structures from Modal Parameters (모달 파라미터를 이용한 보 구조물의 모델링)

  • Hwang, Woo-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.519-522
    • /
    • 2006
  • Accurate modeling of a dynamic system from experimental data is the bases for the model updating or heath monitoring of the system. Modal analysis or modal test is a routine process to get the modal parameters of a dynamic system. The modal parameters include the natural frequencies, damping ratios and mode shapes. This paper presents a new method that can derive the equations of motion for a dynamic system from the modal parameters obtained by the modal analysis or modal test. The present method based on the relation between the eigenvalues and eigenvectors of the state space equation derives the mass, damping and stiffness matrices of the system. The modeling of a cantilevered beam from modal parameters is an example to prove the efficiency and accuracy of the present method. Using the lateral displacements only, not the rotations, gives limited information for the system. The numerical verification up to now gives reasonable results and the verification with the test data is scheduled.

  • PDF

An Experimental Study to Determine the Effective Prestress force of PSC Beam (PSC 부재의 유효 프리스트레스력 평가를 위한 실험적 연구)

  • Chung, Chul-Hun;Park, Jae-Gyun;Kim, Kwang-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.2
    • /
    • pp.21-29
    • /
    • 2008
  • To evaluate the structural integrity of the NPP containment building more rigorously, the effective prestress, which is one of the most affecting elements, needs to be estimated exactly. This paper presents the results of an experimental study to determine the effective prestress force in prestressed concrete beams. It is possible to improve the effective prestress measuring method by test beam, which is being applied for the investigation of the nuclear power plant in operation. If experimentally evaluated Lift-Off method in this study can be coupled with test beam test currently being used in in-service nuclear power plant, it is possible to measure prestress loss of the tendon and the level of the effective prestress load.

The cause examination of the crack of the end beam for welding structure type bogie (용접구조형 대차 엔드빔의 균열원인 규명)

  • Hong Jai-Sung;Ham Young-Sam;Lee Dong-Hyong;Sea Jung-Won
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.726-731
    • /
    • 2004
  • Bogie is the connection device between carbody and wheel in railway vehicles. It is the core part that exert a important effect on the passenger safety and running safety. Bogie largely consists of bogie frame, suspension, brake, wheel set. Static and Dynamic load have acted on it complexly. When the bogie is designed, finite element method, static load test, fatigue test, running test should be considered. Some bogie frame of high speed railway freight car have the problem. It's end beam was cracked. The crack of the end beam have a bad effect on brake system. In that case, the cars would be in danger of derailment.

  • PDF

A Study on the Development of ppb Level Dissolved Silica Measuring System (ppb Level 실리카 측정시스템 개발에 관한 연구)

  • 정경열;오상훈;이후락;동은석;이수태;류길수
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.143-151
    • /
    • 2000
  • Dissolved silica is make some critical trouble at steam turbine. And, we must measure it to ppb level. We were looking for the best measuring method of the silica. Via this study, we could found it in the N-IR spectroscopy technology. This dissertation have been discuss about system structure, system fundamentals and performance test. At the test, we were study in the spectral interference of $NH_3$. We know that existing system had some problem. It is structural frailties of single beam type. Therefore we were study for double beam type structure. And we obtain a good result. In the result, it have been discuss that conduct a test of $NH_3$ effect.

  • PDF

Development of Vehicle Door Impact Beam by Hot Stamping (핫스탬핑에 의한 자동차 도어 임팩트빔의 개발)

  • Yum, Young-Jin;Kim, Jong-Gook;Lee, Hyun-Woo;Hwang, Jung-Bok;Kim, Sun-Ung;Kim, Won-Hyuck;Yoo, Seung-Jo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.7-12
    • /
    • 2008
  • A hot stamping technology of vehicle door impact beam made of thin sheet steel has been developed, with the aim of ensuring occupant safety in a side collision. This technology has been implemented to increase the strength of vehicle body parts and to reduce not only the weight of door impact beam but also the number of work processes. Mechanical tests were performed to obtain material properties of hot-stamped specimen and those were used as input data in stamping and structural simulation for optimal design of door impact beam. Strength of hot-stamped door impact beam increased to the value 102% higher than that of conventional pipe-shaped door impact beam and structural simulation showed that hot-stamped door impact beam achieved 28% weight reduction.

  • PDF