• 제목/요약/키워드: tensors

검색결과 133건 처리시간 0.02초

Single Crystal 133Cs NMR Study of Cs+(15-Crown-5)2I-

  • Lee, Kang-Yeol;Kim, Tae-Ho;Shin, Yong-Woon;Kim, Jin-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권4호
    • /
    • pp.529-532
    • /
    • 2004
  • Cesium-133 NMR spectra of a single crystal of tetragonal $Cs^+ (15-crown-5)_2I^-$ were obtained as a function of crystal orientation in an applied magnetic field of 9.40T and analyzed to provide the magnitudes and orientations of the $^{133}Cs$ chemical shift and quadrupolar tensors for two magnetically nonequivalent and symmetry related sites. Chemical shift tensor components and parameters of quadrupolar interactions are obtained as ${\delta}_{11}=46(1),\;{\delta}_{22}=60(1),\;{\delta}_{33}=-30(1)$ ppm, quadrupole coupling constant QCC = 581(1) kHz, and asymmetry parameter ${\eta}$ = 0.481(1), respectively. The nonaxially symmetric NMR parameters imply that the local environment of the cesium nuclei is nonaxially symmetric. The DANTE experiment burned holes in the $^{133}Cs$ NMR line of the title compound. The hole burning of the single crystal and powder $^{133}Cs$ NMR lines showed that the NMR lines are not homogeneously broadened.

Homogenization based continuum damage mechanics model for monotonic and cyclic damage evolution in 3D composites

  • Jain, Jayesh R.;Ghosh, Somnath
    • Interaction and multiscale mechanics
    • /
    • 제1권2호
    • /
    • pp.279-301
    • /
    • 2008
  • This paper develops a 3D homogenization based continuum damage mechanics (HCDM) model for fiber reinforced composites undergoing micromechanical damage under monotonic and cyclic loading. Micromechanical damage in a representative volume element (RVE) of the material occurs by fiber-matrix interfacial debonding, which is incorporated in the model through a hysteretic bilinear cohesive zone model. The proposed model expresses a damage evolution surface in the strain space in the principal damage coordinate system or PDCS. PDCS enables the model to account for the effect of non-proportional load history. The loading/unloading criterion during cyclic loading is based on the scalar product of the strain increment and the normal to the damage surface in strain space. The material constitutive law involves a fourth order orthotropic tensor with stiffness characterized as a macroscopic internal variable. Three dimensional damage in composites is accounted for through functional forms of the fourth order damage tensor in terms of components of macroscopic strain and elastic stiffness tensors. The HCDM model parameters are calibrated from homogenization of micromechanical solutions of the RVE for a few representative strain histories. The proposed model is validated by comparing results of the HCDM model with pure micromechanical analysis results followed by homogenization. Finally, the potential of HCDM model as a design tool is demonstrated through macro-micro analysis of monotonic and cyclic damage progression in composite structures.

하이퍼볼릭 메타물질: 깊은 서브파장 나노포토닉스를 위한 신개념 플랫폼

  • 노준석
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.78-78
    • /
    • 2015
  • Metamaterials, artificially structured nanomaterials, have enabled unprecedented phenomena such as invisibility cloaking and negative refraction. Especially, hyperbolic metamaterials also known as indefinite metamaterials have unique dispersion relation where the principal components of its permittivity tensors are not all with the same signs and magnitudes. Such extraordinary dispersion relation results in hyperbolic dispersion relations which lead to a number of interesting phenomena, such as super-resolution effect which transfers evanescent waves to propagating waves at its interface with normal materials and, the propagation of electromagnetic waves with very large wavevectors comparing they are evanescent waves and thus decay quickly in natural materials. In this abstract, I will focus discussing our efforts in achieving the unique optical property overcoming diffraction limit to achieve several extraordinary metamaterials and metadevices demonstration. First, I will present super-resolution imaging device called "hyperlens", which is the first experimental demonstration of near- to far-field imaging at visible light with resolution beyond the diffraction limit in two lateral dimensions. Second, I will show another unique application of metamaterials for miniaturizing optical cavity, a key component to make lasers, into the nanoscale for the first time. It shows the cavity array which successfully captured light in 20nm dimension and show very high figure of merit experimentally. Last, I will discuss the future direction of the hyperbolic metamaterial and outlook for the practical applications. I believe our efforts in sub-wavelength metamaterials having such extraordinary optical properties will lead to further advanced nanophotonics and nanooptics research.

  • PDF

유체-구조 연성 문제의 형상 최적설계 (Shape Design Optimization of Fluid-Structure Interaction Problems)

  • 하윤도;김민근;조현규;조선호
    • 대한조선학회논문집
    • /
    • 제44권2호
    • /
    • pp.130-138
    • /
    • 2007
  • A coupled variational equation for fluid-structure interaction (FSI) problems is derived from a steady state Navier-Stokes equation for incompressible Newtonian fluid and an equilibrium equation for geometrically nonlinear structures. For a fully coupled FSI formulation, between fluid and structures, a traction continuity condition is considered at interfaces where a no-slip condition is imposed. Under total Lagrange formulation in the structural domain, finite rotations are well described by using the second Piola-Kirchhoff stress and Green-Lagrange strain tensors. An adjoint shape design sensitivity analysis (DSA) method based on material derivative approach is applied to the FSI problem to develop a shape design optimization method. Demonstrating some numerical examples, the accuracy and efficiency of the developed DSA method is verified in comparison with finite difference sensitivity. Also, for the FSI problems, a shape design optimization is performed to obtain a maximal stiffness structure satisfying an allowable volume constraint.

변분 유한요소법에 의한 비균질 비등방성 매질에서의 전파특성 (Wave propagation in an Inhomogeneous Anisotropic Medium through Variational Finite Element Method)

  • 김현준;홍용인;김두경;김정기
    • 한국전자파학회지:전자파기술
    • /
    • 제3권1호
    • /
    • pp.33-41
    • /
    • 1992
  • 본 논문에서는 변분 유한요소법을 통하여 임의의 유전율 텐서를 포함하는 비등방성 매질에 수직으로 입사한 전자파의 전파특성을 고찰하였다. 먼저 유기정리, 리액션 정리, 가역정리 둥에 기초한 새로운 접근 방볍을 통해 변분수식을 유도하였다. 그 다음 유한요소볍을 이용하여 구해진 범함수로부터 여러 전파특성 에 대해 해석하였다. 특히 냉 자기 플라즈마 슬랩과 같은 균질 및 비균질 비둥방성 매질에 평면파가 수직 으로 입사한 경우에 대해 반사계수, 투과계수 및 축비율을 구하였다. 그리고 이 결과들은 기존의 방법과 비교하여 잘 일치함을 보였다.

  • PDF

다층 예비성형체에 대한 삼차원 충진해석 (Three-Dimensional Mold Filling Simulation for Multi-layered Preform in Resin Transfer Molding)

  • 양매;송영석;윤재륜
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.137-140
    • /
    • 2005
  • Resin transfer molding (RTM) is one of the most popular processes for producing fiber reinforced polymer composites. In the manufacture of complex thick composite structures, analysis on flow front advancement on the resin impregnating the multi-layered fiber preform is helpful for the optimization of the process. In this study, three-dimensional mold filling simulation of RTM is carried out by using CVFEM (Control Volume Finite Element Method). On the assumption of isothermal flow of Newtonian fluid, Darcy’s law and continuity equation are used as governing equations. Different permeability tensors employed in each layer are obtained by experiments. Numerically predicted flow front is compared with experimental one in order to validate the numerical results. Flow simulations are conducted in the two mold geometries, rectangular plate and hollow cylinder. Permeability tensor of each layer preform in Cartesian coordinate system is transformed to cylinder coordinates system so that the flow within the multi-layered preforms of the hollow cylinder can be calculated exactly. Our emphasis is on the three dimensional flow analysis for circular three-dimensional braided preform, which shows outstanding mechanical properties such as high impact strength and toughness compared with other conventional two-dimensional laminar-structured preforms.

  • PDF

CONFORMALLY RECURRENT SPACE-TIMES ADMITTING A PROPER CONFORMAL VECTOR FIELD

  • De, Uday Chand;Mantica, Carlo Alberto
    • 대한수학회논문집
    • /
    • 제29권2호
    • /
    • pp.319-329
    • /
    • 2014
  • In this paper we study the properties of conformally recurrent pseudo Riemannian manifolds admitting a proper conformal vector field with respect to the scalar field ${\sigma}$, focusing particularly on the 4-dimensional Lorentzian case. Some general properties already proven by one of the present authors for pseudo conformally symmetric manifolds endowed with a conformal vector field are proven also in the case, and some new others are stated. Moreover interesting results are pointed out; for example, it is proven that the Ricci tensor under certain conditions is Weyl compatible: this notion was recently introduced and investigated by one of the present authors. Further we study conformally recurrent 4-dimensional Lorentzian manifolds (space-times) admitting a conformal vector field: it is proven that the covector ${\sigma}_j$ is null and unique up to scaling; moreover it is shown that the same vector is an eigenvector of the Ricci tensor. Finally, it is stated that such space-time is of Petrov type N with respect to ${\sigma}_j$.

Multiscale analysis using a coupled discrete/finite element model

  • Rojek, Jerzy;Onate, Eugenio
    • Interaction and multiscale mechanics
    • /
    • 제1권1호
    • /
    • pp.1-31
    • /
    • 2008
  • The present paper presents multiscale modelling via coupling of the discrete and finite element methods. Theoretical formulation of the discrete element method using spherical or cylindrical particles has been briefly reviewed. Basic equations of the finite element method using the explicit time integration have been given. The micr-macro transition for the discrete element method has been discussed. Theoretical formulations for macroscopic stress and strain tensors have been given. Determination of macroscopic constitutive properties using dimensionless micro-macro relationships has been proposed. The formulation of the multiscale DEM/FEM model employing the DEM and FEM in different subdomains of the same body has been presented. The coupling allows the use of partially overlapping DEM and FEM subdomains. The overlap zone in the two coupling algorithms is introduced in order to provide a smooth transition from one discretization method to the other. Coupling between the DEM and FEM subdomains is provided by additional kinematic constraints imposed by means of either the Lagrange multipliers or penalty function method. The coupled DEM/FEM formulation has been implemented in the authors' own numerical program. Good performance of the numerical algorithms has been demonstrated in a number of examples.

Local & Global 모델을 이용한 용접구조물 변형 해석에 관한 연구 (The Analysis of Welding Deformation in Large Welded Structure by Using Local & Global Model)

  • 장경복;조시훈;장태원
    • Journal of Welding and Joining
    • /
    • 제22권6호
    • /
    • pp.25-29
    • /
    • 2004
  • Some industrial steel structures are composed by components linked by several welding joints to constitute an assembly. The main interest of assembly simulation is to evaluate the global distortion of welded structure. The general method, thermo-elasto-plastic analysis, leads to excessive model size and computation time. In this study, a simplified method called "Local and Global approach" was developed to break down this limit and to provide a accurate solution for distortion. Local and global approach is composed of 3 steps; 1) Local simulation of each welding joint on a dedicated mesh (usually very fine due to high thermal gradients), taking into account for the non linearity of the material properties and the moving heat source. 2) Transfer to the global model of the effects of the welding joints by projection of the plastic strain tensors. 3) Elastic simulation to determine final distortions in global model. The welding deformation test for mock-up structure was performed to verify this approach. The predicted welding distortion by this approach had a good agreement with experiment results.

상자성체 $CsMnCl_{3}$ 단결정에서 $^{133}Cs$ 핵자기공명 연구 (Cesium NMR in a Paramagnetic $CsMnCl_{3}$ Single Crystal)

  • Tae-Jong Han
    • 한국자기학회지
    • /
    • 제4권2호
    • /
    • pp.184-187
    • /
    • 1994
  • Czochralski 방법에 의해 성장된 $CsMnCl_{3}$ 단결정에서 $^{133}Cs$의 핵자기 공명을 Bruker FT NMR 분광기를 이용하여 연구하였다. 두 개의 다른 무리의 $^{133}Cs$ 공명선이 관측되었다. : 서로 다른 intensity를 갖는 두 cesium 스펙트럼에 속하는 여러 transition이 분석되었다. Cs(I)의 핵 사중극 결합상수는 $0.15{\pm}0.01$ MHz이고, Cs(II)는 $0.21{\pm}0.01$ MHz이다. 비대칭인자는 두 경우에 대하여 영이고, 일들 두 경우의 EFG 텐서의 주축은 같았다. EFG 텐서의 가장 큰 성분을 만족하는 Z 축은 결정학적인 c축과 나란한 방향임을 알았다.

  • PDF