• Title/Summary/Keyword: tension reinforcement

Search Result 333, Processing Time 0.028 seconds

Tension Stiffening Effect of RC Tension Members Reinforced with Amorphous Steel Fibers (비정질 강섬유로 보강된 철근콘크리트 인장부재의 인장강화효과)

  • Park, Kyoung-Woo;Lee, Jun-Seok;Kim, Woo;Kim, Dae-Joong;Lee, Gi-Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.5
    • /
    • pp.581-589
    • /
    • 2014
  • This paper presents the tension stiffening behavior from experimental results of each 6 amorphous steel fibers and normal steel fibers reinforced direct tensile specimens with the main variables such as cover thickness to bar diameter ratio. A tension stiffening effect for steel fiber reinforced RC tension members improve on the increase in cover thickness, and also amorphous steel fiber is usually superior to normal steel fiber. The reinforcement of steel fibers controlled the splitting cracks and led to significant increase in the tension stiffening effect. In particular, if cover thickness is more than twice the bar diameter, the amorphous steel fiber reinforced specimen is controlled the splitting crack and increased the tension stiffening effect. And, the tension stiffening effect of amorphous steel fiber reinforced concrete tension members is different to current structural design code provision.

Analytical model of corrosion-induced cracking of concrete considering the stiffness of reinforcement

  • Bhargava, Kapilesh;Ghosh, A.K.;Mori, Yasuhiro;Ramanujam, S.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.6
    • /
    • pp.749-769
    • /
    • 2003
  • The structural deterioration of concrete structures due to reinforcement corrosion is a major worldwide problem. Service life of the age-degraded concrete structures is governed by the protective action provided by the cover concrete against the susceptibility of the reinforcement to the corrosive environment. The corrosion of steel would result in the various corrosion products, which depending on the level of the oxidation may have much greater volume than the original iron that gets consumed by the process of corrosion. This volume expansion would be responsible for exerting the expansive radial pressure at the steel-concrete interface resulting in the development of hoop tensile stresses in the surrounding cover concrete. Once the maximum hoop tensile stress exceeds the tensile strength of the concrete, cracking of cover concrete would take place. The cracking begins at the steel-concrete interface and propagates outwards and eventually resulting in the through cracking of the cover concrete. The cover cracking would indicate the loss of the service life for the corrosion-affected structures. In the present paper, analytical models have been developed considering the residual strength of the cracked concrete and the stiffness provided by the combination of the reinforcement and expansive corrosion products. The problem is modeled as a boundary value problem and the governing equations are expressed in terms of the radial displacement. The analytical solutions are presented considering a simple 2-zone model for the cover concrete viz. cracked or uncracked. A sensitivity analysis has also been carried out to show the influence of the various parameters of the proposed models. The time to cover cracking is found to be function of initial material properties of the cover concrete and reinforcement plus corrosion products combine, type of rust products, rate of corrosion and the residual strength of the cover concrete. The calculated cracking times are correlated against the published experimental and analytical reference data.

A Numerical Study on Flexural Strength with the Spreading of Upper Reinforcement of Girder into the Adjoining Slab (보 상부철근의 슬래브 내 분산배근에 따른 휨강도의 수치해석적 연구)

  • Park, Jung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.5
    • /
    • pp.1179-1185
    • /
    • 2007
  • The study of girder-to-column joints under experiment and numerical analysis was carried out to evaluate change of the flexural capacity of the joints with the 2-layer upper reinforcement of girder within rectangular section and the single-layered upper reinforcement at the girder flange. According to the analysis results using the flange width, the flange thickness and the location of reinforcements in the upper flange as variables, in the models with a same effective width, the increasing rate of capacity has nothing to do with the flange width with a same effective width. However, the capacity of the models with the upper reinforcements arranged close to the rectangular beam section is larger than that of the models with the upper reinforcements arranged remotely from the rectangular section. If the range of arrangement fur reinforcement exceeds the effective width, despite of increasing the flange thickness, the capacity is not increased.

  • PDF

Seismic Retrofitting of Existing Reinforced Concrete Columns Using Binding Column Method (외부부착형 BCM공법으로 보강된 철근콘크리트 기둥의 내진보강)

  • Hur, Moo-Won;Park, Tae-Won;Lee, Sang-Hyun;Park, Hyun-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.119-126
    • /
    • 2022
  • This study proposed a BCM(Binding Column Method) that can reinforce the insufficient seismic force of piloti buildings that are not designed for seismic resistance. In addition, 4 reinforcement specimens and 1 reference specimen were manufactured for the proposed seismic reinforcement method. The effect of improving seismic performance before and after reinforcement was examined through repeated loading tests. As a result of experiment, seismic reinforcement specimen with BCM system showed hysteretic characteristics of a large ellipse with great energy dissipation ability and increased strength and stiffness, while reference specimen showed rapid reduction in strength and brittle shear failure column. In addition, it can be seen that the reinforcing effect is improved as the gap is narrow, the torque is large, and the thickness of the L-shaped steel sheet is thicker. The SC4 specimen showed the best seismic performance reinforcement effect.

Strength Evaluation of Reinforced Concrete Corbels using Nonlinear Strut-Tie Model Approach (비선형 스트럿-타이 모델 방법에 의한 철근콘크리트 코벨의 강도 평가)

  • 윤영묵;신용목
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.391-396
    • /
    • 2003
  • The concrete corbels consist of various failure mechanisms such as the yielding of the tension reinforcement, the crushing or splitting from compression concrete struts, and localized bearing or shearing failure under the loading plate. However, predicting those failure mechanisms is very difficult. In this study, the ACI 318-02, the softened strut-tie model approach, and the nonlinear strut-tie model approach are applied to ultimate strength analysis of normal strength concrete corbels tested to failure. From the result of the analysis, an effective analysis and design method of normal strength concrete corbels is suggested.

  • PDF

A Stability Analysis of Geosynthetics Reinforced Soil Slopes II - Evaluation of Required Reinforcement Tensile Force - (토목섬유 보강 성토사면의 안정해석 II. - 소요 보강재 인장력 평가 -)

  • Kim Kyeong-Mo;Kim Hong-Taek;Lee Eun-Soo;Kim Young-Yoon;Ahn Kwang-Kuk
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.8
    • /
    • pp.107-116
    • /
    • 2005
  • Generally, when the stability of the geosynthetic reinforced soil slopes is analyzed, the required tensile forces of each reinforcement layers are calculated from total reinforcement forces which are necessary to retain the equilibrium state of slip mass in which the slip surfaces are assumed to be a linear or bilinear. It is assumed that the reinforcement forces are increased or constant with depth. However, according to the instrumented field data and laboratory model test results, the maximum tensile strain of reinforcement in a reinforced soil slope is developed in a certain elevation, not a bottom of the slope. In the concept of reinforced soil, postulated failure surfaces are the traces of the position in which the reinforcement tensile forces are maximum in the layer, and the reinforcement tensile forces are related to the stress state on the postulated failure surface. Therefore, in this study, based on the distribution of normal stress on the slip surface, a new method for the evaluation of required tensile forces is suggested and a number of the instrumented field data are analyzed by newly suggested method. As a result, it is shown that the newly suggested method produces relatively accurate reinforcement tension forces.

An Experimental Study on the Flexural Behavior of RC Beams Strengthened with High-Strength Bars(1) (고장력 인장봉으로 보강된 RC보의 휨거동에 관한 실험적 연구(1))

  • Shin, Kyung-Jae;Kwak, Myong-Keun;Heo, Byung-Wook;Na, Jung-Min;Oh, Young-Suk
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.4 s.94
    • /
    • pp.527-534
    • /
    • 2006
  • This paper outlines a new strengthening technique for concrete beams using externally unbended high-strength bars. The advantages of proposed method lie in speed and simplicity of construction compared to the alternative strengthening method. Externally unbended reinforcement retains many of the advantages over external unbended prestressed tendons. It eliminates time consuming stressing operations. Clearance requirements around anchorages are reduced as access is not required for prestressing jacks. Test results of eight specimens on reinforced concrete beams using different reinforcement materials such as carbon fiber sheet, steel plate and high-tension bar are reported. The beam strengthened by carbon fiber sheet showed a brittle failure mode due to the separation of fiber. As a result of draped profile of external bar, the maximum strength of the beam were increased by up to 212 percent and the deflections were reduced by up to 65 percent. Test results show that the beams reinforced with high-tension bar are superior to reference specimens, especially for the strength and deformation capacity.

A Case Study on the Reinforcement of Stabilizing Piles against Slope Failures in a Cut Slope (사면붕괴가 발생된 절개사면에서의 억지말뚝 보강 사례연구)

  • Song Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.16 no.2 s.48
    • /
    • pp.189-199
    • /
    • 2006
  • This paper presents a field study of the stability of slope collapsed during road construction and proposes a reasonable countermeasure if the current slope is unstable. As a result of slope investigation, it was found that the slope includes five tension cracks and the sliding surface is started from the tension crack and propagated the surface soil layer through weathered rock layer. The slope stability analyses are conducted in case of dry and rainfall seasons. The results indicate that the slope is unstable status. A reinforcement method of slope failure should be selected according to the scale of failure. That is, the scale of slope failure, which is classified small, middle and large size determines the reinforcement method of slope. Since the slope interested in this study is large size failure slope, the reinforcement method to control slope failure is selected stabilizing piles, and seed spray and drainage of surface waterare also selected to remain the factor of safety. The SLOPILE (Ver. 3.0) program is applied in order to do stability analysis of slope reinforced by piles. As the result of analysis, the slope reinforced by a row of piles shows the stable state. It is clearly confirmed that the stabilizing of piles can improve the stability of slope.

A Study on Improving the Fatigue Life for a Woven Glass Fabric/Epoxy Laminate Composite Applied to Railway Vehicles (철도차량용 직물 유리섬유/에폭시 적층 복합재의 피로수명 향상 방안 연구)

  • Ko, Hee-Young;Shin, Kwang-Bok;Kim, Jung-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.2
    • /
    • pp.203-209
    • /
    • 2010
  • In this study, the fatigue characteristics and life of a woven glass fabric/epoxy laminate composite applied to railway vehicles was evaluated. The fatigue test was conducted using a tension-tension load with a stress ratio R of 0.1 and frequency of 5 Hz. Two types of woven glass fabric/epoxy laminate composite was used in the fatigue test: with and without carbon/epoxy ply reinforcement. In addition, the fatigue life of the woven glass fabric/epoxy laminate composite was compared with that of aluminum 6005, which is used in the car body and underframe structures of railway vehicles. The test results showed that the failure strength and life of the woven glass fabric/epoxy laminate composite reinforced with three carbon/epoxy plies had a remarkable improvement compared with that of the bare specimen without reinforcement.

Ultimate Analysis of Reinforced Concrete Beams (철근콘크리트 보의 극한해석)

  • 김태형;김운학;신현목
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.1
    • /
    • pp.145-155
    • /
    • 1995
  • The purpose of this paper is to present an analysis method which can exactly analyze load-deflection relationships. crack propagations and stresses and strains of steel reinforccnlent and concrete in hehaviors of elastic, mclastic and ultlmate ranges of reinforced concretc beams under monotonically increasing loads. For these purposes, the material nonlinearities are taken into account by comprising the tension. compression and shear models of cracked concrete and a model for reinforcement in the concrete. Smeared crack model is used as a modeling of concrete. The steel reinforcement is assumed to be in an uniaxial stress state and modeled srncaretl layers of eqivalent thickness and line elernents for correct positiori arid behavior. For the verification of application and validity of the method proposed in this paper, several numerical examples are analyzed and compared with those from other researchers. As a results, this method shown in 3.5-15(%) error is correct.