• 제목/요약/키워드: tension reinforcement

검색결과 334건 처리시간 0.038초

고속비상체 충돌에 대한 섬유보강 콘크리트의 국부파괴 매커니즘 분석 (Analysis of Local Failure Machanism of Fiber Reinforced Concrete by Impact of High-Velocity Projectile)

  • 한상휴;김규용;김홍섭;이보경;김정현;김래환
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 추계 학술논문 발표대회
    • /
    • pp.28-29
    • /
    • 2014
  • In this study, flexural strength by fiber reinforced for steel fiber and reinforced polyamide fiber concrete, and concrete fracture properties by improvement of flexural toughness and high-velocity projectile impact were evaluated. As a result, it was confirmed that flexural strength are improved by distribution of stress and suppress of cracks, and the back desquamation of concrete by high-velocity projectile impact is suppressed. In addition, It was observed that the spalling of rear is caused when tension stress is caused as shock wave by high-velocity projectile impact was transferred to the rear and tension stress is suppressed by fiber reinforcement.

  • PDF

A new approach for nonlinear finite element analysis of reinforced concrete structures with corroded reinforcements

  • Shayanfar, Mohsen A.;Safiey, Amir
    • Computers and Concrete
    • /
    • 제5권2호
    • /
    • pp.155-174
    • /
    • 2008
  • A new approach for nonlinear finite element analysis of corroded reinforcements in RC structures is elaborated in the article. An algorithmic procedure for producing the tension-stiffening curve of RC elements taking into consideration most of effective parameters, e.g.: the rate of steel bar corrosion, bond-slip behavior, concrete cover and amount of reinforcement, is illustrated. This has been established on both experimental and analytical bases. This algorithm is implemented into a nonlinear finite element analysis program. The abilities of the resulted program have been studied by modeling some experimental specimens showing a reasonable agreement between the analytical and experimental findings.

Bond between FRP formworks and concrete-effect of surface treatments and adhesives

  • Goyal, Reema;Mukherjee, Abhijit;Goyal, Shweta
    • Steel and Composite Structures
    • /
    • 제20권3호
    • /
    • pp.671-692
    • /
    • 2016
  • FRP stay-in-place (SIP) formworks are designed as a support for casting concrete and as a tension reinforcement when concrete is cured. Bond development between SIP formwork and concrete is critical for FRP tension element to be effective. This paper reports the bond strength between FRP formwork and concrete for different interfacial treatments. A novel experimental setup is prepared for observing the bond behaviour. Three different adhesives with varying workability have been investigated. Along with the load-deformation characteristics, bond slip and strains in the formwork have been measured. A finite element numerical simulation was conducted for the experiments to understand the underlying mechanism. The results show that the adhesive bonding has the best bond strength.

심부구속철근의 응력-변형률 거동 및 에너지 성능에 관한 실험적 연구 (A Experimental Study for Stress-Strain Behavior and Energy Capacity of Confinement Steel)

  • 이재훈;고성현;황정길;손현아
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.77-80
    • /
    • 2006
  • Longitudinal reinforcements of the plastic hinge region were behaved tensile deformation and compressional deformation by direction of lateral loading. However Confinement steels were behaved only tensile deformation by lateral loading. Transverse steels were laid the state of tension in the lateral loading of time, and they were laid state that stress is zero when it was removed lateral load. Nine specimens were tested under cyclic stresses(tension and zero). The purpose of this research is to investigate the strain behavior and capacity of energy for confinement steel. The selected test variables are $L/d_b(L/d_b=6)$, size of reinforcement and specified yielding strength(300, 400, 500 MPa).

  • PDF

Behavior of tunnel form buildings under quasi-static cyclic lateral loading

  • Yuksel, S. Bahadir;Kalkan, Erol
    • Structural Engineering and Mechanics
    • /
    • 제27권1호
    • /
    • pp.99-115
    • /
    • 2007
  • In this paper, experimental investigations on the inelastic seismic behavior of tunnel form buildings (i.e., box-type or panel systems) are presented. Two four-story scaled building specimens were tested under quasi-static cyclic lateral loading in longitudinal and transverse directions. The experimental results and supplemental finite element simulations collectively indicate that lightly reinforced structural walls of tunnel form buildings may exhibit brittle flexural failure under seismic action. The global tension/compression couple triggers this failure mechanism by creating pure axial tension in outermost shear-walls. This type of failure takes place due to rupturing of longitudinal reinforcement without crushing of concrete, therefore is of particular interest in emphasizing the mode of failure that is not routinely considered during seismic design of shear-wall dominant structural systems.

Analysis of the Mechanical Properties of High-Tension Performance Biochar Concrete Reinforced with PVA Fibers Based on Biochar Cement Replacement Ratio

  • Kim, Sangwoo;Lee, Jihyeong;Hong, Yeji;Kim, Jinsup
    • 대한토목학회논문집
    • /
    • 제44권5호
    • /
    • pp.603-613
    • /
    • 2024
  • This study evaluated the mechanical properties of high-tension performance biochar concrete, focusing on the effects of varying biochar cement replacement ratios (0 %, 1 %, 2 %, 3 %, 4 %, and 5 %). Mechanical properties, including compressive strength, tensile strength, and flexural strength, were tested. The results showed a general decrease in compressive strength with increasing biochar replacement, with significant reductions at 1 % to 3 % levels. PVA fiber reinforcement improved long-term compressive strength, particularly at higher biochar levels. Tensile and flexural strength also showed initial reductions with low biochar levels but improved at higher replacement levels. PVA fibers consistently enhanced tensile and flexural strength. SEM images confirmed the integration of biochar and PVA fibers into the cement matrix, enhancing microstructural density and crack resistance.

전단-스팬비가 작은 고강도 철근콘크리트 보의 전단성능에 관한 실험적 연구 (An Experimental Study on Shear Capacity of High-Strength Concrete Beams With Shear Span-Depth Ratio Between 1.5 and 2.5)

  • 신성우;문정일;박희민;이승훈;오정근;임남재
    • 콘크리트학회지
    • /
    • 제4권4호
    • /
    • pp.171-179
    • /
    • 1992
  • 본 연구에서는 전단-스팬비가 1.5에서 2.5 범위의 고강도 콘크리트 보에 대해 기존 규준식의 안전여부를 확인하고, 사균열강도와 극한전단강도를 결정하기 위해 총 15개의 시험체를 제작하여 실험적 연구를 수행하였다. 주요변수는 전단-스팬비(a/d=1.5, 2.0, 2,5)와 수직전단철근비(Rv=0, 25, 50, 75, 100%, Rv=[$ ho$v / $\rho$v(ACI)] 100)이며, 콘크리트 압축강도(f'c=747kg/$ extrm{cm}^2$와 인장철근비($\rho$w=0.0377)는 일정하다. 실험결과 본 연구의 전단-스팬비의 범위에서 ACI 318-89 (11-31)식은 일반적으로 수직전단철근에 의해 저항되는 전단강도를 상당히 과소평가하는 것으로 나타났다. 따라서 수직전단철근에 대한 영향이 재고되어야 할 것이다.

A numerical tension-stiffening model for ultra high strength fiber-reinforced concrete beams

  • Na, Chaekuk;Kwak, Hyo-Gyoung
    • Computers and Concrete
    • /
    • 제8권1호
    • /
    • pp.1-22
    • /
    • 2011
  • A numerical model that can simulate the nonlinear behavior of ultra high strength fiber-reinforced concrete (UHSFRC) structures subject to monotonic loadings is introduced. Since engineering material properties of UHSFRC are remarkably different from those of normal strength concrete and engineered cementitious composite, classification of the mechanical characteristics related to the biaxial behavior of UHSFRC, from the designation of the basic material properties such as the uniaxial stress-strain relationship of UHSFRC to consideration of the bond stress-slip between the reinforcement and surrounding concrete with fiber, is conducted in this paper in order to make possible accurate simulation of the cracking behavior in UHSFRC structures. Based on the concept of the equivalent uniaxial strain, constitutive relationships of UHSFRC are presented in the axes of orthotropy which coincide with the principal axes of the total strain and rotate according to the loading history. This paper introduces a criterion to simulate the tension-stiffening effect on the basis of the force equilibriums, compatibility conditions, and bond stress-slip relationship in an idealized axial member and its efficiency is validated by comparison with available experimental data. Finally, the applicability of the proposed numerical model is established through correlation studies between analytical and experimental results for idealized UHSFRC beams.

재료비선형성을 고려한 R/C 구조물의 유한요소해석 (Material Nonlinear Finite Element Analysis of Reinforced Concrete Structures)

  • 최창근;곽효경
    • 대한토목학회논문집
    • /
    • 제9권3호
    • /
    • pp.31-38
    • /
    • 1989
  • 본 논문은 점진적 증가하중에 의한 철근 콘크리트 구조물의 전반적인 거동을 고찰하기 위한 것으로써 콘크리트의 인장균열, 철근 및 콘크리트의 응력-변형을 관계의 비선형성을 고려하였다. 콘크리트는 인장영역에서는 선형 탄성체로 가정하였으며 압축영역에서 탄소성체로 가정하였다. 압축영역의 콘크리트 거동을 파악함에 있어 Kupfer가 제안한 파괴표면 식을 항복한계로 사용 하였으며 associated flow rule에 의해 거동한다고 가정하였다. 철근은 일축응력을 받는 선형의 변형경화 재료로 모델링하였다. 콘크리트의 균열 발생시 인접한 균열 사이의 tension stiffening effect를 고려하였으며 콘크리트 구조물의 해석시 나타나는 유한요소의 크기에 따른 수치해석 오차를 콘크리트 인장부분의 변형연화 영역의 기울기를 보정함으로써 감소시키는 에너지 개념에 의한 ${\epsilon}_0$의 결정 모델 제안하였다.

  • PDF

보강토옹벽에 대한 모형실험 (Model Test of Reinforced Earth Retaining Walls)

  • 진병익;유연길
    • 한국지반공학회지:지반
    • /
    • 제2권1호
    • /
    • pp.45-54
    • /
    • 1986
  • 보강토잡벽에 대한 합리적인 설계 및 시공방법에 관한 경험적인 자료를 제홍하기 위하여 실내 모형실험이 실시되었다. 본 모형실험에서는 각 축조 단계에서의 보강재의 인장력 변화를 보강재상에 부착된 스트레인 게이지에 의하여 계측되었다. 또한 다이알게이지에 의하여 보강토파벽의 수평이동이 측정되었고, 도건의 붕괴형태가 조사되었다. 모형실험에서 측정된 값들은 보강토옹벽에 대한 기존 연구 결과와 비교.논의하였다. 본 모형실험의 중요한 결과는 보강재의 인장력이 벽면가까이에서 최대가 되어 비선형적으로 변화하며, 벽체에 연결된 보강재가 전류에 대한 안정성을 증가시킨다.

  • PDF