• Title/Summary/Keyword: tension field

Search Result 451, Processing Time 0.026 seconds

Plastic Analysis of Steel Plate Shear Panels using Strip Model (스트립 모델을 이용한 강판 전단패널의 소성 해석)

  • Lee, Myung Ho;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.1
    • /
    • pp.71-80
    • /
    • 2006
  • The behaviors of steel-plate shear panels were investigated through an experimental and analytical study, using mild steel (S40). Steel-plate shear panels buckle at small loads, and their strength is based on the shear panel's postbuckling strength due to tension field action. In design practice, however, the capacity of steel-plate shear panels is limited to the elastic buckling strength of shear panels. Th e National Standard on Limit States Design of Steel Structures, CAN/CSA-S16.1-94 (1994) contains a guideline for the analysis of thi n, unstiffened, steel-plate shear walls using the strip model. In this paper, the structural capacity of shear panels was evaluated using the results of the experiment and of the strip model analysis.

Dyeing Properties of Sulfur Dye Using Nylon High Density Knitting Fabrics (황화염료를 이용한 고밀도 나일론 편성물의 염색성)

  • Chung, Myung-Hee;Cho, Ho-Hun
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.16 no.1
    • /
    • pp.117-123
    • /
    • 2014
  • This paper examined dyeing using sulfur dye with nylon and the characteristics of high gauge knitting for generating high functionality including light weight, wind resistance and elasticity using fine nylon threads. Yarn tension, stitch field and knitting speed of high and fine gauge knitting were measured. The influence of reducing agents on sulfur dye, optimum dyeing conditions and fastness features in nylon dyeing were analyzed. The analysis results are presented below. When nylon (Hyoseong, 40d/34f) and spandex (Hyoseong, 20d) for use as hosiery yarn were used to knit high gauge and flat weave, 44 gauge, the effective knitting conditions were a stitch field over 8.2cm in 1 course length, yarn tension of less than 5g and knitting speed below 18rpm. Nylon dyeing using sulfur dye showed effective results when a rongalite reducing agent was used at more than 10% o.w.f. and dyeing was maintained at $98^{\circ}C$ for 30 minutes. For dyeing nylon and spandex composite using sulfur dye, color fastness in washing, water, daylight and friction were higher than Class 4 or 5, which indicated a superior property. The analysis results verified that the existing problems in nylon dyeing could be solved by using sulfur dyes that don't use heavy metals due to superior fastness and therefore quality, high gauge nylon knit products could be produced.

  • PDF

Volume Integral Equation Method for Multiple Anisotropic Inclusion Problems in an Infinite Solid under Uniaxial Tension (인장 하중을 받는 무한 고체에 포함된 다수의 이방성 함유체 문제 해석을 위한 체적 적분방정식법)

  • Lee, Jung-Ki
    • Composites Research
    • /
    • v.23 no.4
    • /
    • pp.7-13
    • /
    • 2010
  • A volume integral equation method (VIEM) is introduced for the solution of elastostatic problems in an unbounded isotropic elastic solids containing interacting multiple anisotropic inclusions subject to remote uniaxial tension. The method is applied to two-dimensional problems involving long parallel cylindrical inclusions. A detailed analysis of stress field at the interface between the matrix and the central inclusion is carried out for square and hexagonal packing of the inclusions. Effects of the number of anisotropic inclusions and various fiber volume fractions on the stress field at the interface between the matrix and the central inclusion are also investigated in detail. The accuracy of the method is validated by solving the single inclusion problem for which solutions are available in the literature.

Effect of stiffeners on steel plate shear wall systems

  • Rahmzadeh, Ahmad;Ghassemieh, Mehdi;Park, Yeonho;Abolmaali, Ali
    • Steel and Composite Structures
    • /
    • v.20 no.3
    • /
    • pp.545-569
    • /
    • 2016
  • Stiffeners have widely been used in lateral load resisting systems to improve the buckling stability of shear panels in steel frames. However, due to major differences between plate girders and steel plate shear walls (SPSWs), use of plate girder equations often leads to uneconomical and, in some cases, incorrect design of stiffeners. Hence, this paper uses finite element analysis (FEA) to describe the effect of the rigidity and arrangement of stiffeners on the buckling behavior of plates. The procedures consider transverse and/or longitudinal stiffeners in various practical configurations. Subsequently, curves and formulas for the design of stiffeners are presented. In addition, the influence of stiffeners on the inward forces subjected to the boundary elements and the tension field angle is investigated as well. The results indicate that the effective application of stiffeners in SPSW systems not only improves the structural behavior, such as stiffness, overall strength and energy absorption, but also leads to a reduction of the forces that are exerted on the boundary elements.

Seismic performance of steel plate shear walls with variable column flexural stiffness

  • Curkovic, Ivan;Skejic, Davor;Dzeba, Ivica
    • Steel and Composite Structures
    • /
    • v.33 no.1
    • /
    • pp.1-18
    • /
    • 2019
  • In the present study, the behavior of steel plate shear walls (SPSW) with variable column flexural stiffness is experimentally and numerically investigated. Altogether six one-bay one-story specimens, three moment resisting frames (MRFs) and three SPSWs, were designed, fabricated and tested. Column flexural stiffness of the first specimen pair (one MRF and one SPSW) corresponded to the value required by the design codes, while for the second and third pair it was reduced by 18% and 36%, respectively. The quasi-static cyclic test result indicate that SPSW with reduced column flexural stiffness have satisfactory performance up to 4% story drift ratio, allow development of the tension field over the entire infill panel, and cause negligible column "pull-in" deformation which indicates that prescribed minimal column flexural stiffness value, according to AISC 341-10, might be conservative. In addition, finite element (FE) pushover simulations using shell elements were developed. Such FE models can predict SPSW cyclic behavior reasonably well and can be used to conduct numerical parametric analyses. It should be mentioned that these FE models were not able to reproduce column "pull-in" deformation indicating the need for further development of FE simulations with cyclic load introduction which will be part of another paper.

Ultimate load behavior of horizontally curved composite plate girders

  • Shanmugam, N.E.;Basher, M.A.;Khalim, A.R.
    • Steel and Composite Structures
    • /
    • v.9 no.4
    • /
    • pp.325-348
    • /
    • 2009
  • This paper is concerned with steel-concrete composite plate girders curved in plan. At the design stage these girders are assumed sometimes to act independent of the deck slabs resting on them in order to simplify the analysis. The advantage of composite action between the steel girders and concrete deck is not utilized. Finite element modeling of such composite action in plate girders is considered in this paper. Details of the finite element modeling and the non-linear analysis of the girders are presented along with the results obtained. Tension field action in the web panels similar to those observed in the straight plate girders is also noticed in these girders. Finite element and experimental results in respect of curved steel plate girders and straight composite plate girders tested by other researchers are presented first to assess the accuracy of the modeling. Effects of parameters such as curvature, steel flange width and web panel width that affect the behavior of composite girders are then considered in the analyses. An approximate method to predict the ultimate strength of horizontally curved composite plate girders is also presented.

Evaluation of seismic performance of mid-rise reinforced concrete frames subjected to far-field and near-field ground motions

  • Ansari, Mokhtar;Ansari, Masoud;Safiey, Amir
    • Earthquakes and Structures
    • /
    • v.15 no.5
    • /
    • pp.453-462
    • /
    • 2018
  • Damages to buildings affected by a near-fault strong ground motion are largely attributed to the vertical component of the earthquake resulting in column failures, which could lead to disproportionate building catastrophic collapse in a progressive fashion. Recently, considerable interests are awakening to study effects of earthquake vertical components on structural responses. In this study, detailed modeling and time-history analyses of a 12-story code-conforming reinforced concrete moment frame building carrying the gravity loads, and exposed to once only the horizontal component of, and second time simultaneously the horizontal and vertical components of an ensemble of far-field and near-field earthquakes are conducted. Structural responses inclusive of tension, compression and its fluctuations in columns, the ratio of shear demand to capacity in columns and peak mid-span moment demand in beams are compared with and without the presence of the vertical component of earthquake records. The influences of the existence of earthquake vertical component in both exterior and interior spans are separately studied. Thereafter, the correlation between the increase of demands induced by the vertical component of the earthquake and the ratio of a set of earthquake record characteristic parameters is investigated. It is shown that uplift initiation and the magnitude of tensile forces developed in corner columns are relatively more critical. Presence of vertical component of earthquake leads to a drop in minimum compressive force and initiation of tension in columns. The magnitude of this reduction in the most critical case is recorded on average 84% under near-fault ground motions. Besides, the presence of earthquake vertical components increases the shear capacity required in columns, which is at most 31%. In the best case, a direct correlation of 95% between the increase of the maximum compressive force and the ratio of vertical to horizontal 'effective peak acceleration (EPA)' is observed.

Evaluation on the Lost Prestressing Force of an External Tendon Using the Combination of FEM and HGA: II. Experimental Verification and Field Applications (FEM과 HGA의 조합을 이용한 외부 긴장재의 손실 긴장력 평가: II. 실험적 검증 및 현장적용)

  • Jang, Hang-Teak;Noh, Myung-Hyun;Park, Kyu-Sik;Park, Taehyo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.5 s.57
    • /
    • pp.121-132
    • /
    • 2009
  • This paper introduces an experimental verification and a field application of the proposed technique using the combination of FEM and HGA about the loss prestressing force of an exteranl tendon by above same authors. The vibration tests have been conducted by using a laboratory models and the externally prestressed tendon at the field and the natural frequencies are extracted from the vibration tests. The proposed technique based on the extracted natural frequencies is applied. It is seen that the errors in the tension and lost prestressing force by proposed technique are about 4% from a laboratory model test. For the model verification at field, exact modeling has beem made with Rayleigh damping. It is seen that the error in the tension by proposed technique is less than 1% and the estimated lost prestressing force converges less than the exact value.

A Study on Game Dynamics of Battle Royale Genre (배틀로얄 장르의 게임 다이나믹 고찰 -<배틀그라운드>를 중심으로-)

  • Ahn, Jin-kyoung
    • Journal of Korea Game Society
    • /
    • v.17 no.5
    • /
    • pp.27-38
    • /
    • 2017
  • The purpose of this study is to analyze the game dynamics of 'Battle Royale' genre and how these dynamics create dramatic tension, focused on . Battle Royale games maintain the dramatic tension through the intersection of uncertainty and inevitability. Uncertainty is reinforced by randomness of the game world and hidden information of player statement. Inevitability is emerged from the level design with choke point, and restriction of playable field over time. From this mechanism, Battle Royale genre establishes the gameness which derives player's meaningful choice and maintains player's tension until the end of the game.

Estimation of Cable Tension Force by ARX Model-Based Virtual Sensing (ARX모델기반 가상센싱을 통한 사장교 케이블의 장력 추정)

  • Choi, Gahee;Shin, Soobong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.6
    • /
    • pp.287-293
    • /
    • 2017
  • Sometimes, it is impossible to install a sensor on a certain location of a structure due to the size of a structure or poor surrounding environments. Even if possible, sensors can be frequently malfunctioned or improperly operated due to lack of adequate maintenance. These kind of problems are solved by the virtual sensing methods in various engineering fields. Virtual sensing technology is a technology that can measure data even though there is no physical sensor. It is expected that this technology can be also applied to the construction field effectively. In this study, a virtual sensing technology based on ARX model is proposed. An ARX model is defined by using the simulated data through a structural analysis rather than by actually measured data. The ARX-based virtual sensing model can be applied to estimate unmeasured response using a transfer function that defines the relationship between two point data. In this study, a simulation and experimental study were carried out to examine the proposed virtual sensing method with a laboratory test on a cable-stayed model bridge. Acceleration measured at a girder is transformed to estimate a cable tension through the ARX model-based virtual sensing.