• Title/Summary/Keyword: tensile fracture properties

Search Result 619, Processing Time 0.033 seconds

A Study on the Tensile Fracture Behavior of Glass Fiber Polyethylene Composites (GF/PE 복합재료의 인장파괴거동에 관한 연구)

  • 엄윤성;고성위
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.2
    • /
    • pp.158-163
    • /
    • 2003
  • Thermosetting matrix composites have disadvantages in terms of moulding time, repairability and manufacturing cost. Thus the high-performance thermoplastic composites to eliminate such disadvantages have been developed so far. As a result of environmental and economical concerns, there is a growing interest in the use of thermoplastic composites. However, since their mechanical properties are very sensitive to the environment such as moisture, temperature etc., those behaviors need to be studied. Particularly the temperature is a very important factor influencing the mechanical behavior of thermoplastic composites. The effect of temperature have not yet been fully quantified. Since engineering applications of reinforced composites necessitate their fracture mechanic characterization, work is in progress to investigate the fracture and related failure behavior. An approach which predicts the tensile strength was perpormed in the tensile test. The main goal of this work is to study the effect of temperature on the result of tensile test with respect to GF/PE composite. The tensile strength and failure mechanisms of GF/PE composites were investigated in the temperature range 6$0^{\circ}C$ to -5$0^{\circ}C$. The tensile strength increased as the fiber volume fraction ratio increased. The tensile strength showed the maximum at -5$0^{\circ}C$, and it tended to decrease as the temperature increased from -5$0^{\circ}C$. The major failure mechanism was classified into the fiber matrix debonding, the fiber pull-out, the delamination and the matrix deformation.

Effect of Bonding Condition on the Tensile Properties of Diffusion Bonded Haynes230 (고상확산접합된 Haynes230의 인장성질에 미치는 접합조건의 영향)

  • Kang, Gil-Mo;Jeon, Ae-Jeong;Kim, Hong-Kyu;Hong, Sung-Suk;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.31 no.3
    • /
    • pp.76-83
    • /
    • 2013
  • This study investigated the effect of bonding temperature and holding time on microstructures and mechanical properties of diffusion bonded joint of Haynes230. The diffusion bonds were performed at the temperature of 950, 1050, and $1150^{\circ}C$ for holding times of 30, 60, 120 and 240 minutes at a pressure of 4MPa under high vacuum condition. The amount of non-bonded area and void observed in the bonded interface decreased with increasing bonding temperature and holding time. Cr-rich precipitates at the linear interface region restrained grain migration at $950^{\circ}C$ and $1050^{\circ}C$. However, the grain migration was observed in spite of short holding time due to the dissolution of precipitates to base metal in the interface region at $1150^{\circ}C$. Three types of the fracture surface were observed after tensile test. The region where the coalesce and migration of grain occurred much showed high fracture load because of base metal fracture whereas the region where those did less due to the precipitates demonstrated low fracture load because of interface fracture. The expected fracture load could be derived with the value of fracture area of base metal ($A_{BF}$) and interface ($A_{IF}$), $Load=201A_{BF}+153A_{IF}$. Based on this equation, strength of base metal and interface fracture were calculated as 201MPa and 153MPa, respectively.

Effect of Austempering Temperature on the Fracture Characteristics in Austempered Ductile Cast Iron (오스템퍼드 구상흑연주철의 파괴특성에 미치는 오스템퍼링 온도의 영향에 관한 연구)

  • Park, Jun-Hoon;Gang, Chang-Yong;Kim, Chang-Gyu
    • Journal of Korea Foundry Society
    • /
    • v.15 no.2
    • /
    • pp.146-155
    • /
    • 1995
  • This study was performed to investigate the effect of austempering temperature on the mechanical properties and fracture characteristics of the ductile cast iron with Cu, Mo and Cu, Mo, Ni. The results obtained from this study are summarized as follows; Microstructures of Cu-Mo and Cu-Mo-Ni ductile cast iron by austempering were obtained low bainite with some martensite at $250^{\circ}C$, mixture structure of upper and low bainite obtained at $300^{\circ}C$ and upper bainite obtained at $350^{\circ}C$. Tensile, impact and fracture toughness properties were remarkably controlled by retained austenite. With increasing austempering temperature, tensile and yield strength, hardness decreased, while the elongation and impact absorption energy, fracture toughness increased. With adding Ni, tensile and yield strength increased and elongation, facture toughness and impact absorption energy decreased. Retained austenite increased with increasing austempering temperature and the fracture surface were shown mixture structure of fibrous and dimple.

  • PDF

Mechanical Properties & Fracture Toughness of Austempered Gray Cast Iron(AGI) by Permanent Mould Casting (금형주조한 오스템퍼 회주철의 기계적성질 및 파괴인성)

  • Yi, Young-Sang;Lee, Ha-Sung;Kang, Dong-Myeong
    • Journal of Korea Foundry Society
    • /
    • v.15 no.3
    • /
    • pp.291-297
    • /
    • 1995
  • The mechanical properties and fracture toughness of permanent mold cast austempered gray cast iron(AGI) were compared to those of sand cast AGI. The iron was melted to eutectic composition in order to get better castability especially in permanent mold casting. Specimens prepared for tensile, impact and fracture toughness test were austenitized at $900^{\circ}C$ and austempered at $270^{\circ}C$ and $370^{\circ}C$ for 1 hour. The strength, impact and fracture toughness of permanent mold cast AGI were found to be superior to those of sand cast AGI. The maximum value of 836 MPA in tensile strength, was obtained at the austempering temperature of $270^{\circ}C$. But ductility of AGI was not improved by permanent mold casting.

  • PDF

Evaluation on Cement Composites of Dynamic Tensile Fracture Properties by Fiber Type (섬유 종류에 따른 시멘트복합체의 동적 인장파괴특성 평가)

  • Han, Sang-Hyu;Kim, Gyu-Yong;Cheo, Gyeong-Cheol;Kim, Hong-Seop;Kim, Jung-Hyun;Lee, Sang-Gyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.118-119
    • /
    • 2015
  • Fracture behavior of concrete subjected to dynamic loading is affected by loading rate and strain rate. In this study, compressive strength properties according to strain rate of fiber reinforced cement composites by rapid loading with 500Ton rapid loading test machine was analyzed.

  • PDF

Mechanical Properties of Hydrated Cement Paste: Development of Structure-property Relationships

  • Ghebrab, Tewodros T.;Soroushian, Parviz
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.1
    • /
    • pp.37-43
    • /
    • 2010
  • Theoretical models based on modern interpretations of the morphology and interactions of cement hydration products are developed for prediction of the mechanical properties of hydrated cement paste (hcp). The models are based on the emerging nanostructural vision of calcium silicate hydrate (C-S-H) morphology, and account for the intermolecular interactions between nano-scale calcium C-S-H particles. The models also incorporate the effects of capillary porosity and microcracking within hydrated cement paste. The intrinsic modulus of elasticity and tensile strength of hydrated cement paste are determined based on intermolecular interactions between C-S-H nano-particles. Modeling of fracture toughness indicates that frictional pull-out of the micro-scale calcium hydroxide (CH) platelets makes major contributions to the fracture energy of hcp. A tensile strength model was developed for hcp based on the linear elastic fracture mechanics theories. The predicted theoretical models are in reasonable agreements with empirical models developed based on the experimental performance of hcp.

Influence of Reinforced Fiber on Local Failure of the Concrete subjected to Impact of High-Velocity Projectile (고속 비상체 충돌에 의한 콘크리트의 국부파괴에 미치는 혼입 섬유의 영향)

  • Kim, Hong-Seop;Kim, Gyu-Yong;Choe, Gyeong-Cheol;Kim, Jung-Hyun;Lee, Young-Wook;Han, Sang-Hyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.139-140
    • /
    • 2014
  • The purpose of this study in to evaluate relationship between mechanical properties of materials and fiber type by reinforced fiber with high-velocity impact fracture behavior of fiber reinforced concrete. As a result, for fracture behavior by high-velocity impact, it is considered that impact fracture behavior is not affected by static mechanical properties directly but affected by fiber type and density of the number of fiber. It is necessary to consider type, shape, mechanical properties and the number of fiber with flexural and tensile performance for the evaluation on impact resistance performance of fiber reinforced concrete.

  • PDF

Corelationship between Interfacial Fracture Toughness and Mechanical Properties of Concrete (계면파괴인성과 콘크리트 역학적 성질의 상관관계)

  • 이광명;안기석;이회근;김태근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.359-364
    • /
    • 1998
  • The interfacial zone in concrete materials is extensive, geometrically complex, and constitutes inherently weak zones that limit the concrete performance. Motar-aggregate interfaces play a major role in the fracture processing in concrete composites. Also, the interfacial bond considerably influence mechanical properties of concrete such as modulus of elasticity, strength, and fracture energy, Characterization of the interfacial properties is, therefore, essential to overcome the limitations associated with the interfaces. an objective of this paper is to investigate the corelationship between the fracture toughness of mortar-aggregate interface and the concrete properties such as strengths and elastic moduli. It is observed from the test results that interface fracture toughness is closely related with the compressive strength rather than other properties. At early ages, the development of both tensile strength and elastic modulus are much greater thatn that of both interface fracture toughness and compressive strength.

  • PDF

Effects of Pre-Strains on Failure Assessment Analysis to API 5L X65 Pipeline

  • Baek, Jong-Hyun;Kim, Young-Pyo;Kim, Woo-Sik;Seok, Chang-Sung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.3
    • /
    • pp.219-223
    • /
    • 2009
  • This paper prescribed the structural integrity of the API 5L X65 pipeline subjected to tensile pre-strain. The effects of pre-strain on the mechanical properties of API 5L X65 pipe were substantially investigated through a variety of the experimental procedures. Axial tensile pre-strain of 1.5, 5 and 10% was applied to plate-type tensile specimens cut from the pipe body prior to mechanical testing. Tensile test revealed that yield strength and tensile strength were increased with increasing tensile pre-strain. The increasing rate of the yield strength owing to the pre-strain is greater than that of the tensile strength. However, the pre-strain up to 5% had a little effect on the decreasing of the fracture toughness. The structural integrity of the API 5L X65 pipeline subjected to large plastic deformation was evaluated through the fitness-for service code.

Finite Element Analysis on the Effect of the Surface Roughness on the Tensile Properties of Pure Titanium (순 타이타늄 인장 물성에 미치는 표면 거칠기의 영향에 대한 유한요소해석)

  • Baek, S.M.;Moon, J.H.;Kim, H.S.
    • Transactions of Materials Processing
    • /
    • v.26 no.2
    • /
    • pp.108-114
    • /
    • 2017
  • Titanium based implants are known to improve their osseointegration by controlling surface roughness from nanometers to micrometers. Implants continuously and/or repeatedly receive irregular loads in the human body, and require a deeper understanding of the tensile and fatigue properties that can determine the fracture characteristics of the materials. In this study, the plastic deformation behavior which depends on the surface geometry of the materials during tensile tests was analyzed using the finite element method. As a result, the tensile properties were greatly decreased with increasing the sharpness of the surface. On the other hand, the average roughness had no significant effect on tensile properties. This investigation shed a light on developing titanium implants with improved osseointegration by surface treatments.