• Title/Summary/Keyword: temperature variations

Search Result 2,429, Processing Time 0.029 seconds

Multidimensional Hydrodynamic and Water Temperature Modeling of Han River System (한강 수계에서의 다차원 시변화 수리.수온 모델 연구)

  • Kim, Eun-Jung;Park, Seok-Soon
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.866-881
    • /
    • 2012
  • Han River is a complex water system consisting of many lakes. The water quality of Lake Paldang is significantly affected by incoming flows, which are the South and North branches of the Han River, and the Kyungan Stream. In order to manage the water quality of the Lake Paldang, we should consider the entire water body where the incoming flows are included. The objectives of this study are to develop an integrated river and lake modeling system for Han River system using a multidimensional dynamic model and evaluate the model's performance against field measurement data. The integrated model was calibrated and verified using field measurement data obtained in 2007 and 2008. The model showed satisfactory performance in predicting temporal variations of water level, flow rate and temperature. The Root Mean Square Error (RMSE) for water temperature simulation were $0.88{\sim}2.13^{\circ}C$ (calibration period) and $1.05{\sim}2.00^{\circ}C$ (verification period) respectively. And Nash-Sutcliffe Efficiency (NSE) for water temperature simulation were 1089~0.98 (calibration period) and 0.90~0.98 (verification period). Utilizing the validated model, we analyzed the spatial and temporal distributions of temperature within Han River system. The variations of temperature along the river reaches and vertical thermal profiles for each lakes were effectively simulated with developed model. The suggested modeling system can be effectively used for integrated water quality management of water system consisting of many rivers and lakes.

Characteristics of Air Temperature Variations under Different Land Covers during Summer (여름철 토지피복별 기온변화 특성)

  • Kim, Jin-Soo;Park, Jong-Wha;Jung, Gu-Young;Oh, Kwang-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.1
    • /
    • pp.79-88
    • /
    • 2007
  • We investigated the characteristics of temperature variations under different land covers (paddy field, upland, urban park, and urban residential area) during hot summer (July 15 to August 19, 2005). The temperatures were monitored using data loggers at one hour intervals in study sites. The mean temperature generally increased with the distance from edge of paddy fields, being $1.5^{\circ}C$ higher at a site 170-m far from paddy fields than at a paddy field area at 22 h. The mean daily temperatures in the study period followed the ordo. of paddy field $(26.6^{\circ}C)$ < upland $(27.0^{\circ}C)$ < park $(27.5^{\circ}C)$ < residential area $(28.0^{\circ}C)$. The paddy field area has shown remarkable cooling effects compared to the residential area: Mean duration of temperature below $25^{\circ}C$ in the paddy field area was longer (8.6 hrs) than in the residential area; The time to fall to below $25^{\circ}C$ in the paddy field area was sooner (22.4 hr) than in the residential area; Mean daily minimum temperature in the paddy field area was much lower $(2.4^{\circ}C)$ than in the residential area. More research is needed to better clarify the mechanism of cooling effect of a paddy field area by investigating heat balance of a paddy field.

Flow Stress Properties of Electric Resistance Welded Small-Sized Subsea Pipeline Subjected to Temperature and Strain Rate Variations (심해저용 전기 저항 용접 소구경 송유관 소재의 온도 및 변형률 속도 에 따른 유동 응력 특성)

  • Kim, Younghun;Park, Sung-Ju;Yoon, Sung-Won;Choung, Joonmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.241-248
    • /
    • 2015
  • A subsea pipeline for oil/gas transportation or gas injection is subjected to extreme variations in internal pressure and temperature, which can involve a strain rate effect on the pipeline material. This paper describes the flow stress characteristics of a pipeline material called API 5L X52N PSL2, using and experimental approach. High-speed tensile tests were carried out for two metal samples taken from the base and weld parts. The target temperature was 100℃, but two other temperature levels of –20℃and 0℃ were taken into account. Three strain rates were also considered for each temperature level: quasi static, 1/s, and 10/s. Flow stress data were proposed for each temperature level according to these strain rates. The dynamic hardening behaviors of the base and weld metals appeared to be nonlinear on the log-scale strain rate axis. A very high material constant value was required for the Cowper-Symonds constitutive equation to support the experimental results.

The Observed Change in Interannual Variations of January Minimum Temperature between 1951-1980 and 1971-2000 in South Korea (지난 반세기 동안 남한에서 관측된 1월 최저기온의 연차변이)

  • Jung J. E.;Chung U.;Yun J. I.;Choi D. K.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.4
    • /
    • pp.235-241
    • /
    • 2004
  • There is a growing concern about the possible increase in inter-annual variation of minimum temperature during the winter season in Korea. This view is strengthened by frequently reported freezing injury to dormant fruit trees, while warmer winters have prevailed recently. The January minimum temperature record at fourteen weather stations was analyzed for 1951-2000. The results showed no evidence of increasing standard deviation at 3 locations between 1951-1980 and 1971-2000, while the remaining 11 stations showed a trend of decreasing standard deviation for the two periods. An empirical model explaining the spatial variation of the standard deviation was derived by regression analysis of 56 stations' data for 1971-2000. Daily minimum temperature and the site elevation may account for 68% of the observed variations. We applied this model to restore the average standard deviation of the January minimum temperature for 1971-2000, and the result was used to produce gridded minimum temperature data for the recurrence interval of 10 and 30 years at 250m resolution. A digital form of the plant hardiness zone map may be developed from this product for site-specific selection of adapted plant species.

Seasonal Variations of Physical Conditions and Currents in the Sea Near Gadeok-Sudo (가덕수도 근해에서 물리적 현상과 해류의 계절 변동)

  • Jang, Sung-Tae;Jeon, Dong-Chull;Shin, Chang-Woong
    • Ocean and Polar Research
    • /
    • v.30 no.1
    • /
    • pp.33-46
    • /
    • 2008
  • In order to investigate seasonal variations of the physical environments in the region of Jinhae Bay-Nakdongpo, we carried out hydrographic surveys from November 2000 to November 2001. Horizontal and vertical distribution of salinity and temperature shows large seasonal variations. Water column is well mixed in winter and stratified in summer. Low-salinity water is distributed in the form of patches because of the drainage control at the Nakdong River. Seasonal variations in the sea near Gadeok-Sudo are affected by topography, river discharge and tidal current. Currents have been measured using a bottom mounted ADCP and DCM12 between November 2000 and August 2001 in the Gadeok-Sudo. The current in the Gadeok-Sudo shows a distinct two-layer structure with reversed current. Low-pass filtered time series of wind, sea elevation and current are coherent for the period of 1-2 days and are attributed to Ekman-like dynamics. Spatial and temporal circulation pattern shows a slight different. The subtidal current in Jinhae Bay goes northward, however is reversed in the Gadeok-Sudo mouth.

Temporal and Spatial Variability of Sound Speed in the Sea around the Ieodo (이어도 주변해역에서 수중음속의 시공간적 변동성)

  • Park, Kyeongju
    • Journal of Environmental Science International
    • /
    • v.29 no.11
    • /
    • pp.1141-1151
    • /
    • 2020
  • The impact of sound speed variability in the sea is the very important on acoustic propagation for the underwater acoustic systems. Understanding of the temporal and spatial variability of ocean sound speed in the sea around the Ieodo were obtained using oceanographic data (temperature, salinity). from the Korea Oceanographic Data Center, collected by season for 17 years. The vertical distributions of sound speed are mainly related to seasonal variations and various current such as Chinese coastal water, Yellow Sea Cold Water (YSCW), Kuroshio source water. The standard deviations show that great variations of sound speed exist in the upper layer and observation station between 16 and 18. In order to quantitatively explain the reason for sound speed variations, Empirical Orthogonal Function (EOF) analysis was performed on sound speed data at the Line 316 covering 68 cruises between 2002 and 2018. Three main modes of EOFs respectively revealed 55, 29, and 5% the total variance of sound speed. The first mode of the EOFs was associated with influence of surface heating. The second EOFs pattern shows that contributions of YSCW and surface heating. The first and second modes had seasonal and inter-annul variations.

Temporal and Spatial Variations of SST and Ocean Fronts in the Korean Seas by Empirical Orthogonal Function Analysis

  • Yoon, Hong-Joo;Byun, Hye-Kyung;Park , Kwang-Soon
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.3
    • /
    • pp.213-219
    • /
    • 2005
  • In the Korean seas, Sea Surface Temperature (SST) and Thermal ronts (TF) were analyzed temporally and spatially during 8 years from 1993 to 2000 using NOAA/AVHRR MCSST. In the application of EOF analysis for SST, the variance of the 1st mode was 97.6%. Temporal components showed annual variations, and spatial components showed that where it is closer to continents, the SST variations are higher. Temporal components of the 2nd mode presented higher values of 1993, 94 and 95 than those of other years. Although these phenomena were not remarkable, they could be considered ELNI . NO effects to the Korean seas as the time was when ELNI . NO occurred. The Sobel Edge Detection Method (SEDM) delineated four fronts: the Subpolar Front (SPF) separating the northern and southern parts of the East Sea; the Kuroshio Front (KF) in the East China Sea, the South Sea Coastal Front (SSCF) in the South Sea, and the Tidal Front (TDF) in the West Sea. TF generally occurred over steep bathymetry slopes, and spatial components of the 1st mode in SST were bounded within these frontal areas. EOF analysis of SST gradient values revealed the temporal and spatial variations of the TF. The SPF and SSCF were most intense in March and October; the KF was most significant in March and May.

Simulations of time dependent temperature distributions of Super-ROM disk structure using finite element method (유한요소법을 이용한 Super-ROM 디스크 구조의 열 분포 해석)

  • Ahn, Duck-Won;You, Chun-Yeol
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.2
    • /
    • pp.132-136
    • /
    • 2005
  • It is widely accepted that the reading mechanism of Super-RENS(super-resolution near field structure) and Super-ROM(super-resolution read only memory) is closely related with non-linear temperature dependent material properties such as refractive indices, phase change. Furthermore, the dynamic change of the temperature distribution also an essential part of reading mechanism of Super-RENS/ROM. Therefore, the knowledge of the temperature distribution as a function a time is one of the important keys to reveal the physics of reading mechanism in Super-RENS/ROM. We calculated time-dependent temperature distribution in a 3-dimensional Super-ROM disk structure when moving laser beam is irradiated. With a help of commercial software FEMLAB which employed finite element method, we simulated the temperature distribution of ROM structure whose pit diameter is 120-nm with 50-nm depth. Energy absorption by moving laser irradiation, time variations of heat transfer processes, heat fluxes, heat transfer ratios, and temperature distributions of the complicate 3-dimensional ROM structure have been obtained.

  • PDF

Temperature Field Measurement of Ventilation Flow in a Vehicle Interior (TLC와 컬러화상처리를 이용한 자동차 실내 환기유동의 온도장 측정)

  • 윤정환;이상준;김기원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.120-128
    • /
    • 1997
  • The variations of the temperature field in a passenger compartment were measured by using a HSI true color image processing system and TLC(Thermochromic Liquid Crystal) solution. This temperature measurement technique was proved to be useful for analyzing the ventilation flow. The flow field in the passenger compartment was visualized using a particle streak method with pulsed laser light sheet. The temperature field and flow field in the passenger copartment were affected significantly by the ventilation mode. The panel-vent mode heating had shorter elapse time to reach a uniform temperature than the foot-vent mode under the same ventilation condition and nonuniformity inside the passenger compartment could be minimized effectively by using the bilevel heating mode. The temperature increase rate in the rear passenger compartment was iower than the front compartment, especially in the vicinity of the rear seat occupants' knee level.

  • PDF

Analysis of the relationship between operational condition and temperature distribution in a small incinerator (소형 소각로에서 운전조건과 온도분포 사이의 관계 분석)

  • Kim, Sung-Joon;Park, Jong-Hwan;Chun, Bong-Jun
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.63-70
    • /
    • 2000
  • One aims to find out how the operation condition of secondary inlet angle effects the temperature distribution inside a small incinerator. A finite volume commercial code, PHONICS, is used to simulate the temperature field in an incinerator. The computational grid system is constructed by Multi-Block technique. The governing equations based on the curvilinear coordinates are used. Numerical experiments are done with the five variations of secondary air inlet. The temperature distribution is quantified by the statistical deviation of temperature in an incinerator. The computational analysis says that the certain angle of secondary air inlet could improve the uniformity of temperature distribution in an incinerator.

  • PDF