• Title/Summary/Keyword: temperature reliability

Search Result 1,692, Processing Time 0.028 seconds

Reliability Analysis for Deuterium Incorporated Gate Oxide Film through Negative-bias Temperature Instability and Hot-carrier Injection (Negative-bias Temperature Instability 및 Hot-carrier Injection을 통한 중수소 주입된 게이트 산화막의 신뢰성 분석)

  • Lee, Jae-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.8
    • /
    • pp.687-694
    • /
    • 2008
  • This paper is focused on the improvement of MOS device reliability related to deuterium process. The injection of deuterium into the gate oxide film was achieved through two kind of method, high-pressure annealing and low-energy implantation at the back-end of line, for the purpose of the passivation of dangling bonds at $SiO_2/Si$ interface. Experimental results are presented for the degradation of 3-nm-thick gate oxide ($SiO_2$) under both negative-bias temperature instability (NBTI) and hot-carrier injection (HCI) stresses using P and NMOSFETs. Annealing process was rather difficult to control the concentration of deuterium. Because when the concentration of deuterium is redundant in gate oxide excess traps are generated and degrades the performance, we found annealing process did not show the improved characteristics in device reliability, compared to conventional process. However, deuterium ion implantation at the back-end process was effective method for the fabrication of the deuterated gate oxide. Device parameter variations under the electrical stresses depend on the deuterium concentration and are improved by low-energy deuterium implantation, compared to conventional process. Our result suggests the novel method to incorporate deuterium in the MOS structure for the reliability.

A Study on Reliability-driven Device Placement Using Simulated Annealing Algorithm (시뮬레이티드 어닐링을 이용한 신뢰도 최적 소자배치 연구)

  • Kim, Joo-Nyun;Kim, Bo-Gwan
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.5
    • /
    • pp.42-49
    • /
    • 2007
  • This paper introduces a study on reliability-driven device placement using simulated annealing algorithm which can be applicable to MCM or electronic systems embedded in a spacecraft running at thermal conduction environment. Reliability of the unit's has been predicted with the devices' junction temperatures calculated from FDM solver and optimized by simulated annealing algorithm. Simulated annealing in this paper adopts swapping devices method as a perturbation. This paper describes and compares the optimization simulation results with respect to two objective functions: minimization of failure rate and minimization of average junction temperature. Annealing temperature variation simulation case and equilibrium coefficient variation simulation case are also presented at the two respective objective functions. This paper proposes a new approach for reliability optimization of MCM and electronic systems considering those simulation results.

Reliability-based design of prestressed concrete girders in integral Abutment Bridges for thermal effects

  • Kim, WooSeok;Laman, Jeffrey A.;Park, Jong Yil
    • Structural Engineering and Mechanics
    • /
    • v.50 no.3
    • /
    • pp.305-322
    • /
    • 2014
  • Reliability-based design limit states and associated partial load factors provide a consistent level of design safety across bridge types and members. However, limit states in the current AASHTO LRFD have not been developed explicitly for the situation encountered by integral abutment bridges (IABs) that have unique boundary conditions and loads with inherent uncertainties. Therefore, new reliability-based limit states for IABs considering the variability of the abutment support conditions and thermal loading must be developed to achieve IAB designs that achieve the same safety level as other bridge designs. Prestressed concrete girder bridges are considered in this study and are subjected to concrete time-dependent effects (creep and shrinkage), backfill pressure, temperature fluctuation and temperature gradient. Based on the previously established database for bridge loads and resistances, reliability analyses are performed. The IAB limit states proposed herein are intended to supplement current AASHTO LRFD limit states as specified in AASHTO LRFD Table 3.4.1-1.

Development of Accelerated Life Test Method for UHF RFID Tags for Medicine Supply Management (의약품 유통 관리용으로 사용되는 UHF 대역 RFID Tag의 가속수명시험법 개발)

  • Yang, Il Young;Yu, Sang Woo;Park, Jung Won;Joe, Won-Seo
    • Journal of Applied Reliability
    • /
    • v.14 no.2
    • /
    • pp.93-96
    • /
    • 2014
  • RFID (Radio Frequency IDentification) system is recognition technology which can maintain various object's information. Reliability of RFID tags is the most important factor in RFID system. In this paper, we proposed ALT (Accelerated Life Test) method for UHF RFID tags. Temperature and humidity were adopted as stress factors and the accelerated life tests were conducted in three different conditions. We performed failure analysis for identifying failure mechanism and statistical analysis of test data. In the statistical analysis, we employed Inverse Power law for relationship between tag's life and stress. Through the statistical analysis, we proposed acceleration factor for several levels of temperature-humidity. The reliability qualification test plans were also designed for the tag's target reliability.

An Accelerated Life Test of LED Lights for Aviation Taxiway (항공유도로등화용 LED 광원의 가속수명시험)

  • Min, Kyong-Chan;Yun, Yang-Gi;Kim, Myung-Soo
    • Journal of Applied Reliability
    • /
    • v.11 no.2
    • /
    • pp.127-140
    • /
    • 2011
  • This paper presents an accelerated life test of aviation taxiway lights installed in the airport to help safe navigation of airplanes at night or in bad weather. Recently halogen lamps of taxiway lights are replaced by LED ones and their reliability needs yet to be verified. Thus, effective test conditions are designed reflecting the failure modes and mechanisms from the previous studies on LED, which include the accelerated degradation process. The test is performed under the temperature $70^{\circ}C$ and $90^{\circ}C$ for two types of LED lights, taxiway center line lights(TCLL) and taxiway edge lights (TEDL). The failure time data were analyzed using lognormal distribution and Arrhenius model to find the life-stress relationship, acceleration factor and life characteristics under the normal condition temperature $30^{\circ}C$.

Lifetime prediction of the engine mount about the environment temperature variation (환경 온도변화에 대한 자동차용 엔진마운트의 수명 예측)

  • Kim, Hyung Min;Wei, Shin Hwan;Yoon, Sin Il;Shin, Ik Jae;Kim, Gyu Ro
    • Journal of Applied Reliability
    • /
    • v.13 no.1
    • /
    • pp.65-76
    • /
    • 2013
  • In order to assess the reliability of engine mount for a vehicles, life test model and procedure are developed. By using this method, failure mechanism and life distribution are analyzed. The main results are as follows; i) the main failure mechanism is degradation failure of engine mount rubber by fatigue failure at dynamic load. ii) temperature is a second factor to affect a failure. iii) the life distribution of engine mount module is fitted well to Weibull life distribution and the shape parameter is 18.4 and the accelerated life model of that is fitted well to Arrhenius model.

Creep Lifetime Prediction of Composite Geogrids using Stepped Isothermal Method

  • Koo, Hyun-Jin;Cho, Hang-Won
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2006.05a
    • /
    • pp.158-164
    • /
    • 2006
  • The creep behavior of newly developed composite geogrids which consists of PET yarns sheathed in PP were evaluated using SIM. For the SIM procedure, three test parameters, the applied loads, temperature steps and number of ribs were investigated, The study confirmed that temperature steps of 10 and 14$^{\circ}C$ up to 80$^{\circ}C$ are applicable for composite geogrids due to the different transition temperatures between two materials. At applied loads of 40 and 50%, only primary creep state was measured, while secondary creep state appeared at the applied loads of 60%, The lifetimes of composite geogrids were estimated at each of loading level using statistical reliability analysis technique. The results show that the lifetimes longer than 100 years can be predicted within 16 hours. Therefore, SIM is very effective and economical accelerated creep test methods, especially for lifetime prediction. This gives guidelines for users to select the appropriate factor of safety against creep considering the field condition within shorter test times.

  • PDF

A Study on the Assembly Process and Reliability of COF (Chip-On-Flex) Using ACFs (Anisotropic Conductive Films) for CCM (Compact Camera Module) (ACF를 이용한 CCM (Compact Camera Module)용 COF(Chip-On-Flex) 실장 기술 및 신뢰성 연구)

  • Chung, Chang-Kyu;Paik, Kyung-Wook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.2
    • /
    • pp.7-15
    • /
    • 2008
  • In this paper, the Chip-On-Flex (COF) assembly process using anisotropic conductive films (ACFs) was investigated and the reliability of COF assemblies using ACFs was evaluated. Thermo-mechanical properties of ACFs such as coefficient of thermal expansion (CTE), storage modulus (E'), and glass transition temperature $(T_g)$ were measured to investigate the effects of ACF material properties on the reliability of COF assemblies using ACFs. In addition, the bonding conditions for COF assemblies using ACFs such as time, temperature, and pressure were optimized. After the COF assemblies using ACFs were fabricated with optimized bonding conditions, reliability tests were then carried out. According to the reliability test results, COF assemblies using the ACF which had lower CTE and higher $T_g$ showed better thermal cycling reliability. Consequently, thermo-mechanical properties of ACFs, especially $T_g$, should be improved for high thermal cycling reliability of COF assemblies using ACFs for compact camera module (CCM) applications.

  • PDF

Reliability Assessment of Low-Power Processor Packages for Supercomputers (슈퍼컴퓨터에 사용되는 저전력 프로세서 패키지의 신뢰성 평가)

  • Park, Ju-Young;Kwon, Daeil;Nam, Dukyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.2
    • /
    • pp.37-42
    • /
    • 2016
  • While datacenter operation cost increases with electricity price rise, many researchers study low-power processor based supercomputers to reduce power consumption of datacenters. Reliability of low-power processors for supercomputers can be of concern since the reliability of many low-power processors are assessed based on mobile use conditions. This paper assessed the reliability of low-power processor packages based on supercomputer use conditions. Temperature cycling was determined as a critical failure cause of low-power processor packages through literature surveys and failure mode, effect and criticality analysis. The package temperature was measured at multiple processor load conditions to examine the relationship between processor load and package temperature. A physics-of-failure reliability model associated with temperature cycling predicted the expected lifetime of low-power processors to be less than 3 years. Recommendations to improve the lifetime of low-power processors were presented based on the experimental results.

Electric Current Accelerated Degradation Test Design for OLED TV (OLED TV Panel의 전류가속열화시험 설계)

  • You, Ji-Sun;Lee, Duek-Jung;Oh, Chang-Suk;Jang, Joong Soon
    • Journal of Applied Reliability
    • /
    • v.17 no.1
    • /
    • pp.22-27
    • /
    • 2017
  • Purpose: The purpose of this study is to estimate the life time of OLED TV panel through electric current ADT(Accelerated Degradation Test). Methods: We performed accelerated degradation test for OLED TV Panel at the room temperature to avoid high temperature impact on the luminance. Results: we got more accurately the life time of the OLED TV when we applied ADT without temperature factor than including both current and temperature. Conclusion: Until now, the ADT of the OLED TV has been conducted with temperature and current at the same time for reducing test time and costs. We estimate incorrect life time when the temperature is adopted as an accelerated factor. Due to the high temperature impact on the luminance of the OLED TV panel. So as to solve this problem, we discard temperature and use electric current only.