• Title/Summary/Keyword: temperature estimation

Search Result 1,651, Processing Time 0.028 seconds

Thermal Analysis According to Duty Ratio of IPM Type BLDC Motor (IPM type BLDC 전동기의 통전비에 따른 온도 특성 해석)

  • Kim, Yong-Tae;Cho, Gyu-Won;Kim, Gyu-Tak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.42-47
    • /
    • 2014
  • The use of BLDC motor in Vehicle and industrial field, it is operated by continuous and intermittent driving. When the intermittent driving is occurred by the rise and fall of temperature repeatedly, it was represented by different characteristics in case of continuous driving. So, it is very important that heat source estimation according to the duty ratio. In this paper, temperature characteristics according to the operating method of BLDCM was calculated by using the thermal equivalent circuit, and the validity of the study was demonstrated as compared to the calculated and experimental results.

Zricaloy-4 Oxidation Kinetics in High-Pressure High-Temperature Steam (지르칼로이-4의 고압 고온 수증기에서 산화 반응 속도)

  • 박광헌;김규태
    • Journal of Surface Science and Engineering
    • /
    • v.34 no.1
    • /
    • pp.17-24
    • /
    • 2001
  • A model for quantifying the effect of steam pressure on the oxide thickness growth was developed based on the experimental data available. First, empirical equations for the thickness estimation of oxide formed in 1 atm steam were made. The oxide growth kinetics turned out to be dependent on 0.4th power of oxidation time. With an assumption that the transition oxide thickness be only a function of temperature, a model for the enhancement of steam pressure on oxide growth was developed. The enhancement coefficient for steam pressure is calculated to be 0.01~0.013 $bar^{-}$. The developed model generally well explains the experimental data.a.

  • PDF

A Study on Dynamic Modeling of Photovoltaic Power Generator Systems using Probability and Statistics Theories (확률 및 통계이론 기반 태양광 발전 시스템의 동적 모델링에 관한 연구)

  • Cho, Hyun-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.7
    • /
    • pp.1007-1013
    • /
    • 2012
  • Modeling of photovoltaic power systems is significant to analytically predict its dynamics in practical applications. This paper presents a novel modeling algorithm of such system by using probability and statistic theories. We first establish a linear model basically composed of Fourier parameter sets for mapping the input/output variable of photovoltaic systems. The proposed model includes solar irradiation and ambient temperature of photovoltaic modules as an input vector and the inverter power output is estimated sequentially. We deal with these measurements as random variables and derive a parameter learning algorithm of the model in terms of statistics. Our learning algorithm requires computation of an expectation and joint expectation against solar irradiation and ambient temperature, which are analytically solved from the integral calculus. For testing the proposed modeling algorithm, we utilize realistic measurement data sets obtained from the Seokwang Solar power plant in Youngcheon, Korea. We demonstrate reliability and superiority of the proposed photovoltaic system model by observing error signals between a practical system output and its estimation.

A Study on the Improvement of Evaluation Method of Diagnosis-System for Exterior-Wall Deterioration by Infrared Thermography (적외선 탐사기를 이용한 외벽열화 진단시스템의 평가기법 향상에 관한 연구)

  • Kim, Moo-Han;Kwon, Young-Jin;Kang, Suk-Puo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.2
    • /
    • pp.185-190
    • /
    • 1999
  • It is difficult to estimate for deterioration of exterior wall by infrared thermography, because of amount of infrared-ray radiation effected by environmental factors such as temperature properties of materials, the outside air and the amount of solar radiation. Therefore we measured the distribution of temperature by times in the same reinforced-concrete structure in order to reduce problems, occasioned by environmental factors, then we analyzed physical influence factors of the infrared thermography. It is the aim of this study to suggest basic data with regard to method of estimation-system for deterioration of exterior wall in reinforced-concrete structures.

  • PDF

Application of MCC and Inverse Method for the AVHRR/SST (해수면 온도분포에 대한 최대상관계수법과 역행렬법의 적용)

  • 이태신;정종률
    • Korean Journal of Remote Sensing
    • /
    • v.11 no.1
    • /
    • pp.19-29
    • /
    • 1995
  • The surface velocities were estimated by the Maximum Cross Correlation(MCC) method and an inverse method from AVHRR/SST. In the results of MCC, discontinuous flow fields were estimated in the case that cross correlation coefficient was above 0.5 but these flow pattern disappeared when cross correlation coefficient was above 0.9. This estimation was conspicuous near SST patterns of eddies. In the results of inverse method, flow field was continuous and eddy motion was estimated definitely but the velocity was overstimated in compared with MCC result over the area of small temperature gradient. This result may be due to temperature error included in SST calculated and spatial variation of heat flux.

A Study on the Applicability of Estimation of Apparent Activation Energy of Blast Furnace Slag Contained Cement Using Calorimeter (열량계를 이용한 고로슬래그 혼입 페이스트의 겉보기 활성화 에너지 산정에 관한 연구)

  • Kim, Han-Sol;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.78-79
    • /
    • 2021
  • It is necessary to calculate Apparent Activation Energy(Ea) in order to apply the equivalent age formula to predict compressive strength using the maturity method. For carbon reduction, it is necessary to consider the change of Ea by condition of GGBFS concrete, which is widely used today. In this study, as a basic study for the design of the compressive strength model of GGBFS concrete, the apparent activation energy of the GGBFS mixed paste was calculated through a calorimeter. The experiment was carried out at a hydration temperature of 10 to 30℃ with a paste test specimen having a GGBFS content of 0 to 80%. As a result, the GGBFS replacement rate of the paste increased, and Ea tended to increase as the temperature decreased.

  • PDF

A Study on the Sanitary Condition of Kitchens in Food Court/Cafeterias - An Observation on Seasonal Variations (휴게음식점 주방의 환경위생상태에 관한 조사연구 - 계절별 변화를 중심으로 -)

  • Kim, Jong-Gyu;Park, Jeong-Yeong;Kim, Joong-Soon
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.2
    • /
    • pp.118-127
    • /
    • 2012
  • Objectives: This study was undertaken to assess the sanitary conditions in the kitchens of food court/cafeterias and determine seasonal variations. Methods: We measured environmental factors (air temperature, relative humidity, illumination intensity, noise level), and dropping airborne microbes (bacteria and fungi) in the kitchens of eight food court/cafeterias in four seasons (January, April, July, and October). Air temperature and relative humidity were measured with in/out thermo-hygrometers at 1.2-1.5 m above floor level. Illuminance measurement was performed through the multiple point method of Korean Standards (KS). Noise level was measured by the standard methods for the examination of environmental pollution (noise and vibration) of Korea. The estimation of dropping airborne bacteria and fungi was performed through use of Koch's method. Results: The highest kitchen air temperature was in July, and the lowest in January. The average temperature surpassed $21^{\circ}C$ throughout the seasons, suggesting a higher temperature than required for the safe handling of food. Humidity in all the kitchens was measured in the range of 50-60%. Half of the kitchens showed illumination intensities below 300 Lux in April. It was found that the sound pressure level of noise in almost all of the kitchens was higher than 85 dB (A). The highest levels of dropping airborne bacteria and fungi were noted in July. The numbers of airborne bacteria were higher than those of fungi. The levels of dropping airborne bacteria and fungi were affected by air temperature, relative humidity, season, and place. Conclusions: This study indicates that the kitchen environments were unqualified to supply safe food. The hygiene level of the kitchens should be improved.

Estimation of the Temporal and Spatial Variation of Surface Temperature Distribution in the Korean Peninsula using NOAA/AVHRR Data (NOAA/AVHRR 위성자료를 이용한 한반도 표면온도의 시공간적 변동 추정)

  • Suh, Young-Sang;Lee, Gi-Chul;Lee, Na-Kyung;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.3
    • /
    • pp.150-160
    • /
    • 2005
  • In this study, the spatiotemporal surface temperature changes were analyzed in the Korean peninsula. The surface temperature variation was estimated using the split window method and NOAA/AVHRR data in 1991, 1995 and 2000. The ranges of differences in temperature between day time and night time were $3-15^{\circ}C$ around the peninsula. The differences in seasonal variations and yearly fluctuations in big cities were lower than those in rural areas and showed clearly the effects of the urbanization. The characteristics of urban heat affects were further determined based on the day and night time temperature comparison on Busan metropolitan area between these periods. Finally, the future use of this technology was suggested for the urban environmental planning.

  • PDF

Estimation of Characteristics Change on Transverse Mode PZT Vibrator Under Space Environment (우주환경하에서 횡진동 모드 PZT진동자의 특성변화 예측)

  • Lee, Sang Hoon;Moon, Guee Won;Yoo, Seong Yeon;Kim, Jung Soon;Kim, Moo Joon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.8
    • /
    • pp.514-522
    • /
    • 2012
  • The temperature dependence of the characteristics in a PZT-5 piezoelectric ceramic vibrator with the transverse mode was investigated in the range of $-100^{\circ}C$ to $90^{\circ}C$ using a thermal vacuum chamber to utilize the vibrator in aerospace industries. As the results, at room temperature, the resonant and anti-resonant frequencies had the minimum value, whereas, the dielectric constant increased linearly from about 2500 to 7500 in the given temperature range. The mechanical loss decreased linearly from 0.08 to 0.03. Through the regression analysis, the temperature dependence functions of the characteristics were derived to linear and square regression functions. Applying the functions, the input admittance characteristics of the piezoelectric vibrator were calculated, and the results showed good agreement with measured ones. It can be confirmed that this method is useful to estimate the characteristics change of the piezoelectric vibrator caused by the temperature change under the space environment.

Estimation of N Mineralization Potential and N Mineralization Rate of Organic Amendments as Affected by C:N Ratio and Temperature in Paddy Soil

  • Shin, Jae-Hoon;An, Nan-Hee;Lee, Sang-Min;Ok, Jung-Hun;Lee, Byun-Woo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.712-719
    • /
    • 2016
  • Understanding N mineralization dynamics in soil is essential for efficient nutrient management. An anaerobic incubation experiment was conducted to examine N mineralization potential and N mineralization rate of the organic amendments with different C:N ratio in paddy soil. Inorganic N in the soil sample was measured periodically under three temperature conditions ($20^{\circ}C$, $25^{\circ}C$, $30^{\circ}C$) for 90 days. N mineralization was accelerated as the temperature rises by approximately $10%^{\circ}C^{-1}$ in average. Negative correlation ($R^2=0.707$) was observed between soil inorganic N and C:N ratio, while total organic carbon extract ($R^2=0.947$) and microbial biomass C ($R^2=0.824$) in the soil were positively related to C:N ratio. Single exponential model was applied for quantitative evaluation of N mineralization process. Model parameter for N mineralization rate, k, increased in proportion to temperature. N mineralization potential, $N_p$, was very different depending on C:N ratio of organic input. $N_p$ value decreased as C:N ratio increased, ranged from $74.3mg\;kg^{-1}$ in a low C:N ratio (12.0 in hairy vetch) to $15.1mg\;kg^{-1}$ in a high C:N ratio (78.2 in rice straw). This result indicated that the amount of inorganic N available for crop uptake can be predicted by temperature and C:N ratio of organic amendment. Consequently, it is suggested that the amount of organic fertilizer application in paddy soil would be determined based on temperature observations and C:N ratio, which represent the decomposition characteristics of organic amendments.